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INTRODUCTION (by J.D. ZUND)

The major part of this research report is essentially the Ph,D.
dissertation of Wayne Moore, "Conformal Geometry and Differential Geodesy,"
which was written under my direction at New Mexico State University with the
support of the Air Force Geophysics Laboratory. This dissertation is
reprcduced in its original form, apart from the correction of minor
typrgraphical errors. This report is prepared in the hope that it will be
useful to mathematical geodesists who are interested in further exploring the
fascinating ideas of Martin Hotine. In addition to the dissertation, I have
prepared a supplement which describes joint work of Dr. Moore and myself which
was done after completion of the dissertation. The contents of the
dissertation and supplement definitely settle Hotine's conjecture on the use
of triply-orthogonal systems of surfaces as a natural coordinate system in
differential geodesy. Hotine made his conjecture in 1966, and it is included
in his treatise, HOTINE [1969]1, but was unresolved until our investigation.
We show that this conjecture is false, however, we believe that this negative
result in no way impairs either Hotine's approach or the importance of his
conception of a unified approach to three-dimensional geodesy wusing the
notions of tensor analysis and differential geometry.

The following discussion gives a guide and commentary to the contents of
this research report.

The dissertation consists of four chapters, a bibliography, and an
appendix. Chapter I -- Introduction -- contains some preliminary comments on
geodesy intended for mathematicians and physicists. It is not comprehensive,
but is merely intended to indicate the close relationship which existed

between geodesy and mathematics and physics before the twentieth century. In

1In this report, the cited references are those given in the dissertation.
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effect, it sets the stage for the topic to be investigated in the
dissertation. The chapter concludes with biographical material on Antonio
Marussi and Martin Hotine, and their proposal to create a three-dimensional
geodesy in the discipline which we call differential geodesy.

Chapter II -- Conformal Geometry —— is a self-contained introduction and
systematic exposition of conformal geometry, i.e., the geometry of a pair of
N-dimensional Riemannian spaces N and GN which are related by a conformal
transformation. It presumes a prior acquaintance with tensor analysis, and
can be regarded as supplement to the discussion in HOTINE [1969] (Chapter 10,
pages 55-62) and EISENHART [1949] (Chapter II, pages 89-95). The latter is
the standard reference in English on the topic, however, it is very incomplete
and really merely a partial summary of known results. Chapter II begins with
a brief excursion into the modern formulation of conformal geometry in Section

§2. This is admittedly somewhat abstract, however, it is necessary to make

precise the notion of a conformal transformation, i.e., mapping, between V

N
and Yy This notion, and what is meant by adopting the same local coordinate
system on both VN and V! is obscurely done in the classical literature,

e.g., EISENHART [1949]). Sections $3-5 then contain a systematic development
of ~onformal geometry using the classical formulation with particular
attention being given to the dimensions N =2 and N =3 which are of
primary importance in non-relativistic differential geodesy. The most
interesting mathematical aspects of conformal geometry occur when N > 4, and
the cases N= 2 and N=3 are often inadequately treated in the
literature. Section &3 introduces the basic ideas, concepts, and
tensor-theoretic quantities encountered in conformal geometry, and Section %4
discusses their behavior when N =2 and N = 3, Section &5 considers
integrability conditions and conformally flat spaces. The presentation of
this material in the usual references, i.e., EISENHART (1949) and SCHOUTEN

[1954], is wholly inadequate and riddled with errors. Moreover, the original
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material is also confusing. The key results, which are the "X-Representation"

of the curvature tensor (see pages 29-30) and Schouten’s lemma (see Theorem
5.3, on page 33), were originally done in Schouten’s symbolic notation which
was not widely understood and which Schouten himself later abandoned. The
material is quite subtle and intricate, and I regard Section §5 as being the
clearest and best treatment of the subject which I have seen. The topic of
conformally flat spaces is likely to be of considerable importance in future
work in differential geodesy. Both HOTINE [1966a, 1966b] and MARUSSI [1985]
(see pages 169-176) suggested that such spaces are important in studying the
propagation of light in continuous isotropic refracting media. Virtually
everything in Chapter II is necessary to understand the conceptual setting for
resolving Hotine’s Conjecture.

Chapter III -- Triply Orthogonal Systems -- is devoted to introducing the
basic notions occurring in Hotine’s Conjecture. Section &1 reviews the theory
of triply orthogonal systems of surfaces and presents some elementary examples
of such systems. It also includes the Dupin Theorem (Theorem 1.1, pages
39-41) and the Generalized Dupin Theorem (Theorem 1.2, pages 41-42). The
former is proven in Section §1, however, the latter is more complicated, and
its proof is deferred until Chapter IV. Section 82 is devoted to giving a
tensor-theoretic derivation of the Cayley-Darboux equation and explicitly
exhibits the general form of this equation. The material in this section has
been accepted for publication, see ZUND/MOORE [1986], and will appear in the
near future. It turns out that the Cayley-Darboux equation is the critical
result in refuting Hotine’s Conjecture. As will be shown in the supplement,
Hotine's version of this equation is wrong, and this led him into believing
that this equation was always identically satisfied in a flat three~

dimensional Euclidean space E;- Section %3 contains a statement and proof of
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Liouvilie’s Theorem (Theorem 3.1, pages 46-51). This important result is
discussed (without attaching Liouville’s name to it) in HOTINE [1969] (see
page 56 and his footnote, and also in HOTINE [1966a, 1966b]). The theorem is
rather deep and delineates the possible types of conformal transformations
between N-dimensional Euclidean spaces Ey and EN Despite its importance,
this result is rarely proven in the literature, and Section 3 concludes with
a self-contained proof which is based on that given in BIANCHI [1910). A
general N-dimensional argument is given in DUBROVIN/FOMENKO/NOVIKOV ([1984],
but it is incomplete and is not changed in the second, 1986, Russian edition
of this book.

Chapter IV -- Differential Geodesy -- presents the analytical apparatus
for analyzing the Hotine Conjecture and the flaws in his alleged proof. After
formally stating his conjecture in Section %1 and why he hoped it would be
true, in Section 82 the question of isometric immersion of a surface V2 in a

\ is discussed together with the behavior of V2 under a conformal

3
mapping. Section 83 introduces the formalism of Ricci rotation coefficients

and indicates how they are affected by a conformal mapping of V3 into \}3.
Although in HOTINE [1969] this kind of reference system -- it is convenient to
call it a triad -- was implicitly employed, this important topic was not
explicitly utilized. This was a serious omission in Hotine's analysis, since,
as we will show in the supplement, it will allow us to conclusively
demonstrate that his Cayley-Darboux equation is wrong and not an identity! We
believe that this triad formalism is particularly suited to the requirements
of differential geodesy and will prove to be an important part of future
developments in mathematical geodesy. Section 84 uses this formalism to
concisely establish two important criteria: the Schouten-Eisenhart Theorem

(Theorem 4.1, pages 59-61) and the Ricci-Finzi Theorem (Theorem 4.2, pages

61-63), for the conformal flatness of a 4T Theorem 4.3, (pages 63-64)
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furnishes a new Schouten-Eisenhartlike criterion for a V3. A more abstract
version of the results of Section 84 has been submitted to Tensor N.S. for
publication. The properties of congruences of curves being normal, geodesic,
and canonical are studied in Section %5 using rotation coefficients and a
proof of the Generalized Dupin Theorem is given (pages 70-71). This new proof
has been accepted for publication, see MOORE/ZUND [1986]. An example of how
to find a canonical congruence is presented in the Appendix (pages 101-103).
Section §6 contains a rotation coefficient formulation of the Cayley-Darboux
equation. Section %7 now begins our analysis of Hotine’s Conjecture by
outlining the steps of his argument. Section §8 shows by using Theorem 8.1
(page 81) that part of Hotine's proof is false. Section %9 examines when the
conformal image of a normal congruence of curves can be a geodesic normal
congruence and suggests that another step of Hotine’s argument is shaky.
Section 810 briefly considers the question of a conformal mapping between a
pair of surfaces V2 and &2, and shows that a formula for the conformal
image of the geodesic curvature given in MARUSSI [1985) (see his page 150) is
inccrrect. Finally, in Section §11 our results are applied to give a critique
of Hotine’s argument. It is shown that further flaws occur in his procedure:
he specialized the conformal function defining his mapping and made essential
use of coordinates/equations which are valid only at a point of a vy The
effect of either of these mistakes is to demand that his (curved) surfaces
degenerate into (flat) planes. None of these steps can be easily rectified,
and when, taken together, they strongly suggest that Hotine's argument is
fatally flawed, and that his conjecture is false.

The Supplement (written by J.D. Zund) now furnishes the conclusive
reasons why Hotine’s conjecture is false. It is intended as a companion to

our joint paper, "Hotine's Conjecture in Differential Geodesy," which will be

published in Bulletin Grodesique. In this supplement we not only extend the
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material in Dr. Moore’s dissertation, but provide the details of our
refutation of the Hotine Conjecture which had to be omitted in our paper.
After some introductory comments in Section §1, we translate Hotine's
Cayley-Darboux equation into the rotation coefficient formalism and prove that
it is not equivalent to the true Cayley-Darboux equation in Section §2. This
shows that the Cayley-Darboux equation is not an identity as Hotine claimed,
and hence his conjecture cannot be true. Finally, in Section 53 we discuss
the physical consequences of this result, and what they mean for differential
geodesy.

In conclusion, Dr. Moore and I would like to express our gratitude to the
Air Force Geophysics Laboratory and in particular to Dr. Jekeli for his
invitation to prepare this research report. The cooperation and support of
this research under contract F 19628-86-K-0028 "Conformal and Non-Conformal

Transformations in Differential Geodesy" is gratefully acknowledged.

Joseph D. 2und

Principal Investigator and
Professor of Mathematics

New Mexico State University

Las Cruces, New Mexico

July 1987
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CHAPTER 1

INTRODUCTION

%1. GEODESY AND MATHEMATICS

Theoretical geodesy is the study of the size and shape of the
Earth. This is not geographic shape, but rather the shape of the
surface of mean sea level and its continuation under the earth’s
crust. This surface of mean sea level is called a geoid and by
definition it is an equipotential surface of the earth’s
gravitational field.

The history of geodesy may be divided into three eras: the
spherical era, the spheroidal era, and the geocidal era. The
spherical era dates from the time of the Greeks to approximately
1670. The spheroidal era stretches from 1670 to approximately 1830.
The geoidal era spans from 1830 to the present. An eminent
mathematician was pivotal in the transition between each of these
eras.

Pythagoras is normally credited as being first to conceive of
the earth as spherical. He reasoned that since the sun and moon are
spherical, then the earth must have a similar shape. Aristotle made
what was probably the first scientific estimate of the size of the
earth. However, since we have no idea of the size of his unit of
length (the stadium) it is impossible to estimate the accuracy of his
work. In the third century B.C., Erastosthenes, considered one of
the founders of geodesy, devised the idea of measuring the size of

the great circle arc between the North and South poles. His
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i technique was based on measuring the difference in the angle of the
:} sun’s rays at Alexandria and Syrene (now Aswan), which he assumed to
1.. be on the same longitude. Although Erastosthenes’ estimate is 15%
4
. too large when compared with modern estimates, his idea is very
]
! modern in spirit and the error is due to the crudeness of his
: measurements. In the first century B.C., Posidonius made another
estimate of the size of the earth based on the difference in the
L)
¥
= angle the star Canopus made with the horizon at Alexandria and
‘ Rhodes. His estimate was also 11% too large.
i
P&
After Posidonius interest in geodesy lapsed for some 1500 years
;'er'
N when it was rekindled by the need for accurate maps and the _:'
x AP
» exploration of the New World. 1In 1617, Snell used triangulation as a N
u.‘f.:'-
method to determine distances. This was a breakthrough since this i
v
method was much more accurate than direct measurement. In 1669,
X Picard used a telescope to determine latitude as well as in \
o+
4
triangulation. Picard’s work is extremely important since Newton 3a
"*";
. used his estimate of length of the arc of a degree of latitude to :_":‘-:g
N rh
K. A
- show that gravity extends beyond the surface of the earth and \::'_:
Y- O
AN,
determines the motion of the moon. This estimate of the length of a R
. AR
- degree of latitude ultimately became the basis of the metric system. ":,’,'._,:
. I
- The period between Erastosthenes and Picard is the spherical era t.'f:::;
. \'d'_.f
) of geodesy. The work of Isaac Newton inaugurates the spheroidal era. L
\
A Newton’s discoveries in mechanics, i.e., laws of motion, and the E-‘JE;;\-
b
) formulation of the law of gravitational attraction, are crucial steps f(:..'::
S .
in determining the shape of the earth. Newton used a theoretical 0‘*.#.‘
) argument based on the hydrostatic equilibrium of the oceans to show AN
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that the earth was an oblate sphere with the major axis 1,230 longer
than the minor axis. The modern value for this eccentricity is
approximately 1/290. After Newton published this estimate, many
people were anxious to confirm or refute it. It was reasoned that if
the earth were flattened at the poles, a degree of latitude would be
shorter near the poles than at the equator. The Cassinis, a family
of astronomers, using estimates for a degree of latitude in the north
and the south of France, determined that the earth was a prolate
sphere and not an oblate sphere. This announcement naturally aroused
a good deal of controversy, and in the 1730's the French Academy of
Sciences sent two expeditions —-- one to Lapland and one to Peru -- to
settle the matter. Their measurements showed that the earth was
indeed oblate with eccentricity 1,/178. It is interesting that
Newton, sitting in his room in Cambridge, could produce a better
estimate than the French Academy could with two expeditions.

With the initiation of mechanics and gravitation by Newton other
mathematicians were fast to extend his studies. Euler developed the
mechanics of rigid bodies, Lagrange analytical mechanics, Legendre
potential theory, Laplace the mechanics of rotating fluid masses. A
powerful mathematician, Clairaut, computed the variation of gravity
with latitude. Daniel Bernoulli and Laplace studied tides and
methods to predict them. This research was not "pure" research,
which was then applied to physical problems, but mathematics that was
developed to understand physical and geodetic phenomena.

As Newton opened the spheroidal era, it was Gauss (at least in

spirit) who started the geoidal era. Gauss became geodetic
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consultant for the Prussian army in 1799 and in 1820 was involved in
field work where he developed new instruments for surveying. He
adapted his method of least squares to geodetic measurements and
developed the Gaussian probability distribution to  smooth
observational errors. Using data from geodetic measurements, he was
led to develop his theory of curved surfaces. Gauss’s intrinsic
geometry of surfaces eventually led Riemann to the general theory of
intrinsic geometry.

Mathematicians and physicists who followed Gauss developed and
extended his work. Green further developed potential theory (he
coined the term). Stokes calculated the undulations of the geoid
from the theoretical ellipsoid (Stokes Theorem). Rayleigh and
Poincaré extensively studied tides.

Starting around 1900 the close connection between geodesy and
mathematics begins to diminish. This was caused by exciting new
problems in mathematics causing it to become divorced from physics.
Moreover, physics was evolving into modern physics and leaving behind
classical physics with which goedesy was primarily concerned.
Moreover, with the development of accurate instrumentation geodesy
became less concerned with mathematical methods and theoretical

physics.

§2. HOTINE, MARUSSI AND THREE-DIMENSIONAL GEODESY
The technical achievements of the 1950's made it possible for
geodesy to at last leave the surface of the earth. High flying

aircraft and satellites could measure gravity high above the earth
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and submarines could measure it deep below the sea. The geodetic

community was slow to take advantage of these new technologies as

MARUSSI[1985], p. 6, notes:

The third dimension thus appears, in practical Geodesy, as
an intruder in the flourishing paradise of the Geodesist, which
comprises the surfaces of the ellipsoid and the geoid; and when
this intruder comes to claim his proper rights, no efforts are
spared to get rid of him as quickly as possible, and with the
least trouble, by means of a weighty battery of corrections and
reductions, which for two centuries has figured in avery
treatise on Geodesy.

The first two advocates of three-dimensional geodesy were
Antonio Marussi and Martin Hotine. Their advocacy was for a point of
view -~ that geodesy is inherently three-dimensional. Both men began
to apply and develop mathematics so that this viewpoint could be
practically put to use.

Antonio Marussi was born in Trieste, Italy in 1908. He received
a Ph.D. degree in mathematics at the University of Bologna and then
joined the Istituto Geografico Militare (Italian geodetic and mapping
agency) in Florence. During his twenty years with them he modernized
geodetic procedures, adopted international standards, and streamlined
computing schemes. In 1952, he accepted a professorship at the
University of Trieste.

Marussi introduced advanced mathematical tools such as tensor
analysis to geodesy. He also recognized the practical aspects of
geodesy by doing field work in numerous countries. He died in 1984.

Martin Hotine was a career military officer and rose to the rank

of Brigadier. He attended the Royal Military Academy at Woolwich,
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England and was commissioned into the Royal Engineers in 1917,

During his career in the British Army he pioneered practical methods
of topographic mapping using aerial photography, did geodetic
surveying in East Africa, served with the British Ordinance Survey,
and during the Second World War he served as Deputy Director of
Survey in the British Expeditionary Force. Hotine earned a degree in
engineering from Magdalene College, Cambridge, during his time in the
service.

Hotine retired from the military in 1946 and became the first
director of the Directorate of Overseas Surveys where he served until
1963. He then jointed the U.S. Coast and Geodetic Survey. When the
Environmental Sciences Services Administration was formed, he became
a research staff member of this agency’s laboratory at Boulder,
Colorado. It was during this time that he wrote HOTINE[1969] and
pioneered the systematic use of tensor techniques in geodesy. Hotine
died in 1968.

Hotine and Marussi came to geodesy from vastly different
directions. Both men achieved distinction in theoretical and
practical geodesy and came to similar conclusions concerning

theoretical work. Their viewpoint is summed up by MARUSSI(1985]}:

In effect, what we know today of the earth’s gravity field
owes very much more to work done at the desk, with pencil and
paper, than to observations made with instruments in nature,
(p. 5).
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§3. NOTES ON THIS DISSERTATION

Y

In this dissertation we have examined a conjecture by Martin ,:,.E;-‘?u.
[ )

Hotine on triply orthogonal coordinate systems. In Chapter II, we

l‘l’ " -
A

introduce notation and develop machinery for conformal geometry. In

»
1Y

Chapter III, triply orthogonal coordinate systems are discussed.
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Chapter IV then deals with Hotine's conjecture.
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We have employed a somewhat unusual method of listing items in

the bibliography. This method is based on that employed by J.A. ;_w v
Schouten in his book SCHOUTEN(1954], which is probably the most E}E:Eé
comprehensive book on tensor analysis. 1Items in the bibliography are 53%&}
listed by author’s name and listed chronologically. References to ~. -
specific items are indicated by the author’s name in capital letters E,_ :
with the date displayed in brackets. In case of several items in a ;;_;}
given year, the dates have lower case Latin indices attached. :.:\-:;;u
General references to an author are given by citing the author’s name z:‘::.;\ :
without complete capitalization. We are grateful to Mary Eberhardt :EEE‘;?
of the Graduate School for her understanding and advice on how best g’?‘:‘e
to use Schouten’s system in our bibliography. ES:::E:
We have used the Einstein summation convention on repeated gé-*::j
indices. When we do not want to sum on repeated indices the letters ‘ 3
"NS" for "no sum" will be written by the equation. }AEEE
‘:'f}-":'f
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i 51. INTRODUCTION AND BASIC NOTATION w4
" Al

The purpose of this Chapter is three-fold:

- (i} to introduce the notation and conventions to be employed, .
o~ 1
;; (ii) to relate the classical and modern terminology, 25$(

> '
[ s \}

{iii) to provide proofs of some "well known" classical results

- , . qu
X which are not easily accessible. e
‘-. J'\.‘
\Q Our notation is essentially that of EISENHART[1949], with slight 222
v :

' modifications. However, our presentation 1is considerably more bl
-.: .ﬂ\'
o detailed. Let V. denote an N-dimensional Riemannian manifold. BN
e ‘f "
" L cat
Y Initially we assume that N > 3 and the metric tensor is positive N
<. A

- definite. The cases N =2 and N = 3 will be dicussed separately. »
:7 The symbolism ":=" and "=" will denote "equal by definition" and :i;i
o’ o
. R}
e "identity", respectively. Free indices will be h, i, j, k, ¢, m, n R
b » -{\.‘
. Sl
’ and summed indices (used for emphasis when only some indices are '
) S
:?‘: summed) will be p, g, r, s, t . In the case N=2 or 3 no \(
' :‘4‘
f? special indices will be used. Later, special conventions will be s
;‘ ‘\’\"
L] LA
made, e.g., when N = 2 Greek indices will be used. e
o Section 2 uses its own notation, which will be introduced there. j{ﬁa
[ .:.:.'. g
%‘ Additional notation will be given where appropriate. RGN
\ Faral
" Y )
" %2. THE MODERN FORMULATION Wy
iy . g
by Definition (2.1). Let M and M be smooth N-dimensional NS
¥ éb“\
. Riemannian manifolds (all manifolds are assumed connected and of T
. o
-, M
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class Cm). The Riemannian manifolds M and M are locally

P
Sae
et
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e
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L

conformal, whenever,

LSO
)

Pl &
XX A

(i) for every p€ M and p € M there exists a neighborhood

g
5

~ ~

of p:UCM and a neighborhood of p : UCM, and a

AP WY,

e
"f [4

y,
X

map f:U-U, f(U) = 6 such that f is a
diffeomorphism with f(p) = é ; o
{ii) there exists a C  function A : U-R such that for e
any pair of tangent vectors Xp and Yp in the tangent {f ]

-ﬁ?vﬁ
space of M at p, Tp(M) , that satisfies .3;\

(a) A>0 on U, )

(b) for the inner products < , >m and <, >. in the YD
M PO

respective tangent spaces Tp(M) and T.(M) , e

P v o

one has

(2.1) <EX ,EY > = .\(p)<xp,Y > ot

PPy pM e .?\-;«.

rd
¥

>
o a

where f_: Tp(M) - T.{M) 1is the derivative {or Jacobian) map of

A
)
2
* ':n. .
: N
f . The map f 1is a local conformal map, and the function X\ is &ﬁ}sx
ST ARY.
Wt
called the conformal factor. jJ ‘__
y'\ y '
The derivative map, f, , is defined by F::ﬁ:
S
)
(£,%)g t= X (goF) SN
)
where g € d"(M,R) U

The local charts {U,h} and {U,h} of M and M,

respectively, are related by the commutative diagram

RN
11 RN
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(2.2) . 1
h h := hof
N

and the local coordinate systems {xl} and {xl} (i=1, ..., N)

"

of h(p) and h(p) in U and U , respectively, are related by the

commutative diagram

c

— U
2.3 i l
IRN

4

~ ~

i.e., xi = E(xi) , where f is the identity map. This fact,
although obvious from (2.2) and (2.3), is often obscured in the
classical literature. This is the meaning of the expression
"imposing the same coordinates on both manifolds". See HOTINE[1969],

p. 55.

To exhibit the familiar tensor expressions for (2.1), we take a
natural coordinate basis e, := IUNEPN Tp(M) , and denote the map

~1 ol
ax

N:p-oR by Ap) = eX” where o =o(x') . The derivative mapping

acts on the basis vectors e according to

J d a J
(2.4) f*(gl) = f*(-—l) =—.i-= ———1
Jdx ax X
Then since
25 epf T 9Eg) = 9y
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and

{2.5a) <ei,ek> = g(ei,ek) = 95y
(2.1) becomes
. o
(2.6) 9.k =€ 9k

The tensors g and é with components 9k and éik respectively,
are the metric tensors of M and ﬁ , respectively. This is the
usual tensor expression defining a locally conformal map between M
and & (EISENHART{1949]). lassically, e.g., 1n DUBROVIN/FOMENKO/
NOVIKOV[1984], one often encouniers the expression
. r . s

(2.7) 9,5 =g[5%::—35
which reduces to (2.6) by virtue of our definition of the map f, in
{2.4).

Actually (2.6) is improperly written since it relates components
of tensors defined in the tensor products of different cotangent

spaces. The correct expression requires introducing the pullback (or

restriction) mapping of the cotangent spaces, i.e.,
f* :T.(M)® ... 0 T (M) = Tp(M) ® ... TP(M)
p p
defined by

*
(f a)(p)(gl, ceer V) E a(f(p))(f‘(yl), cees f*(Yk))
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where a is a covariant tensor of order k and M € Tp(M) , and

requires writing

(2.8) £'g = e¥g ,
or classically,
* " 2‘,
(2.9) f gij =e g,

However, the use of (2.6) is so pervasive in the literature that in
this dissertation we will always use it. We will always use the term
conformal to mean locally conformal and henceforth write M = Vi and
M =V, as in EISENHART[1949].

We now give expressions for the Levi-Civita connections and the
curvature operators on M and ﬁ , respectively. Writing é = \g ,

~

AD>0 and let v and v denote the Levi-~Civita connections

compatible with g and g , respectively. Then using

(2.10) <vx,¥,Z> ==-]2; (§<¥,Z> + Y<§,X> - %O..('Y)

~

+ <2,[X, ¥ + <Y, {Z,X]> - <X, [Y.,2]>) ,

{(2.10) is just the definition of the Christoffel symbols) we have

1
(2.11) va = va + 3 ((§#)¥ + (?b)f - <§,¥>vw)

~ ~
-~

where ¢ := log o .
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Calculating the curvature form for v we have

~ o~ A ~ o~ o~

(2.12) RIXYIZ = RGYIZ + 5 (b (X,2)Y - h (Y,2)X

v

+

1
<§,§>qp¥ - <¥,§>H¢§) + 3 [((gw)(g

<Y,Z>I|v4»l|2)X - ((R)(Zy) - X, 2> IIV\JJIIZ)Y

+ ((XP)<Y,Z> - (W)X, 2>v¢) ]

where R(X,Y) is the curvature form of v , Hw is the Hessian

tensor which is a tensor of type (1,1) on M with wa 1=V v,

and the Hessian form, h¢ , is given by hw(x,Y) i= <H¢X,Y> . Hw is

self-adjoint with respect to the Riemannian metric. See

GROMOLL/KLINGENBERG/MEYER([ 1968].

LAWY P70 W AN I NS N S I P i Y R e ke a0 R S v 4>~V & B iem———

Our viewpoint and analysis are always local. However, the
distinction between local and global concepts is often fuzzy in the

geodetic literature.

ﬁ:'—"l

A stronger notion of conformality is that of conformal

“ s

YTy

. equivalence.

]
Definition 2.2. Let M and M  be N-dimensional Riemannian
manifolds. Then M and M are conformally equivalent whenever

there exists a diffeomorphism

such that f defines locally conformal maps on neighborhoods of M
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For example, consider the 2-sphere 52 and the plane EZ . It
is well-known that by stereographic projection 52 is locally
conformal to Ez ; however, since 52 is compact and E2 is
non-compact, these manifolds cannot be diffecmorphic.

83, THE CLASSICAL FORMULATION
The modern definition of conformal mapping was given in 82. In

sections 3-5 we use the classical definition and terminology.

A
*y 'l:‘l

a

Definition 3.1. If the metric tensors of V and VN are related

N
by

Jere
; < ‘:' !
.’I'I.‘-
8]

h)
5

',A
._';1
s

>
)
Pd

4 A

r

(3.1) g.. = ezag

A A

ij
where o 1is a smooth function from VN to the real numbers, then
VN and vy are said to be conformally related or just conformal.

1

Ly |
rl

‘-
'
a -"‘ ‘: .'l

» 1 IR

NB: The choice of the conformal factor as ezo instead of 02

"..f.‘l '."9
b

e
5

. . . . 20 ,
or A (used in 82) is mere convenience. The choice of e is nice

.'.::]
¢ |

for differentiation and eliminates many unnecessary factors of 2
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N
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LR NN

and % , but has no geometric significance. The function o in e

»
4
.

is the conformal function.

We now define the Christoffel symbols of V
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(3.3) rij =g rijh '

where "|" followed by a subscript denotes partial differentiation
with respect to local coordinates.

By direct calculation using (3.1), (3.2), and (3.3) we obtain

the Christoffel symbols for Vy ¢

(3.4) rokar Koa Kk,

ij ij ij
where
k .k k kp

(3.5) Aij = 61‘. Gj + 6j a, - gijg op ,
and where we have written

(3.6) . iz )

3 795

which are the components of vo , i.e., the gradient of o

NB: We add suffixes omitting a differentiation sign only on
scalar quantities and only for first derivatives. HOTINE[1969] did

not follow this convention, and in V.. we write

N
T.1. =01.1. £ O,
il = "1l 7 i3
We will denote covariant differentiation with respect to rijk by
"," and with respect to r..k by ";" Directional derivatives

1]
will be denoted by "/" , e.g., the directional derivative of f in

the direction A is

~
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ﬁ The Beltrami differential parameter of the first kind will be -’QI
::; denoted by Aln where s
. .
o )
1 § 13 t""."‘
Aja = (7.0 . ')»_
e 1 97 N E:
‘,' The Beltrami differential parameter of the second kind (or {i’
“
o) g
3 Laplace-Beltrami operator) is denoted by L and given by ?‘:Q.-
~ Y
\: h
' .. AL
4 (3.8) Ao := gljn “
N 2 1,3} ':,\.
S The usual Euclidean expressions for A0 and 4,0 are Y
= pX
= 2
« (3.9) Aln = (vg)+(vo) ,
*: ~ ~
.
Ej where "-" denotes the usual Euclidean inner product and
w0, -——
2 -\.- A2l
S = g = EA
» (3.10) A20 v (Y”) vo R
u :_\.:__
X e
id We see how (3.9) and (3.10) are related to (3.7) and (3.8) by A
- -
denoting the Cartesian metric tensor by r:atL
y Y]
w3
b 3.11 = RGN
. ( ) 913 iy ! L:.:;‘:S
' so that ¢
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The Riemann tensor

r ~( .‘f f~f

™

U
1,)
Gy
v

i3
.
(Rnigk * “hijk’
19
J:,_I.'-',"-“ r

b

= g'%,

2

%33 * %1il5

iy *
[i]j

A
a
= 9715 * 9197k T 9niTik

= 9ik"hy ~ M%igk ¢

P = e
Rhljk
Sy 8
hijk
A A A

PRd

is given by
;"w.'

ilg
a
The Riemann tensor of VN will be denoted by Rhijk , the Ricci
(3.12)
(3.13)
I

tensor by Rij , and the scalar curvature by R
N

Note that in Vi

and

note also that

and by definition one writes

of

where

and
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(3.14) ik = 9ni%ik " Ik%ij -

Ssome useful contractions of Shijk and ghijk are given by

-h
(3.15) Eij t= Eijh = (N - 2)”ij + (AZU + (h - 2)Ala)gij ,
or alternately
(3.16) z = (N - 2)[o + Ao} + L pXe]
: 1] i3 7 9%5M1 2(N-1) “°ij
where
v e= lj\ = ‘i = - - -
(3.17) I :=g *i3 X 2(N l)Azo + (N - 1)(N 2)Alo ,
hk
{3.18) g ghijk = (1 - N)gij p
ij hk _ B
h h h
(3.20) 94k = 6jgik - ékgij =
h h
6). ék
9§ ik | ,
g g
- ;P _ | °hi hk
(3.21) Ihijk = 6higpj gk
935  Yik |,
and
hi _ ,hi _  hi  hi
(3.22) g =g s i 6,05
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and where b; is the Kronecker delta.

The relations (3.12)-(3.22) make it possible to calculate the

Ricci tensor and scalar curvature of VN . The Ricci tensor of VN '

~

Rij , 1s given by

(3.23) Rij = Rij + (N - 2)nij + gij(Azn + (N - 2)Ala) ,

and R , the scalar curvatures of V

N ¢ 1s given by

(3.24) l; = e—ZU(R + 2(N - l)A2(7 + (N -1)(N - 2)A10)

As usual
h hk

(3.25) Rij := R ijh = g Rhijk ,

and
. _ gl

(3.26) R :=g Rij R i
We also have

(3.27) 9; iR = 9;5(R + 2(N - DAy + (N = 1IN = 2)450)
from which it follows that

(3.28) 95k - 9i5R - (N ~ 1)(N - Z)Alngij =

2(N - 1A yg;

’
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(3.29)  Ayg,, = i

24l L

Iy

Thus we have

-

Yy

[y
P
45

(3.30) R, - R (N - 2)

(Yij + ((N - l)Alo + Aza)gij

R

AL oS
wJ
[
-
f.'
27,
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2z h19i5 ¢
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and therefore
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(3.31) (N —Z)ni
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(N-2)
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Yy

[N =y
P
b

’ ¢

;‘I

iﬂ\
CLYy

K
o
i

via (3.31) we obtain

7

Upon replacing "ij in )hijk

SAANAAS,

(3.32) C.. =20C.
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J
>
[
[N
x
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h ]
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2

This shows that Ch.. ,
ijk

r" h
SRR

W

defined by
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TS NN
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h_ .h 1 .h h h h
(3.33) C l]k := R l]k + —-——(N_z) (r:)_Rik - ()kR.Lj + glkR ) - gl]Rk)
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is invariant under a conformal map. It should be noted that
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(3.34) Chisk ©= IneS gk
+ - { R.,, -~ g.,R.. +g - g )
Bhijk * 27 IniRik 7 Ris * 9ikPhy T 9i3Fnk
_ R
(N-1)(N-2) hijk

is not a conformal invariant since

~ 20
(3.35) Chijk = e Chijk .

The tensor Ch..
ijk

The Weyl tensor is completely traceless, i.e., all contractions

is called the Weyl conformal curvature tensor.

vanish. It satisfies the usual symmetries:

{3.36) c .. =-C

(3.37) Chijk = ~Cinjk = Ckni

and the algebraic Bianchi identity,

(3.38) C..,. +C...+C . .=0.

However, it does not satisfy the differential Bianchi identity. To

see this we introduce the Finzi tensor

1
(3.39) Ll]k = Rij,k - Rik,j + 2((_N_—T))(glkR,] - gl]R,k) B

which satisfies

{3.40) L., =-L. .,
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(3.41) L ik =9 Lijk

lﬂ'l‘ :"..J.. J.',l
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Then the conformal analog of the differential Bianchi identity is
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AR T
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h h h
(3.42) Sk TS ikt Cike,y T
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The singly contracted Bianchi identity is

ER A ]
WU

Pl

(3.43) . R., .+ g™

i,k ik, j mikj,h = 0

.
o
R

..
WA

and the doubly contracted Bianchi identity is

(3.44)

From this it follows that

) “‘ l‘ 4‘. '.

{3.45)

-
P

Ly
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Moreover, an interesting contraction of (3.42) is obtained by using

I
.

(3.45)

} “‘;‘ l“J"J% .F'
‘l. oo -_'l. L
SN
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(3.46) o NS

e

ijk,h = N-2
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We now introduce two additional tensors -~ the Einstein tensor

ANy

and the Cotton tensor -- which are important tensors in arbitrary

)

dimension but have particular significance in dimensions 2, 3, and 4.
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The Einstein tensor is defined by i

(3.47) Sij : i

’

ij :hﬁ'

it
o]
t
(ST
(Vo]
x
(A
h]
W

| and the Cotton tensor by

1

Y™

8§4. SPECIAL VALUES OF “N" o

We first consider the case N = 2 . e
“o

The elimination procedure used in %3 to obtain a conformal )
. - . b
curvature tensor breaks down for Rij . Rij . R, and gin when

N =2 . We first show that every Vv is an Einstein space (recall .

2

that an Einstein space is a Riemannian space such that )

Oy
LA A A
%

R
(4.1) R"_ﬁg"’

[

J
R
A4t
’,

or in the case N = 2 . .

vy

N NA S

v

(4.2) R -3 9.R=5_=0)

1’?' "-ﬁl
1

P
¥

p IS

In a V2 the curvature tensor has the canonical form

' B WAt
WA

(R}

]
a .
o
7,

h h
(4.3) R ik = K(frjgik - g..0

2
x

and so

“r o g .

e e

LR T g

(4.4) Ry = Klg; 5 - 29, = K,

-
v

¥
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o
e

LORRERF

Hence we have
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(4.5) R = -2K,
or
(4.6) K= - i R
. 5 R.
Therefore,
- R
(4.7) Rij =3 95
so that every v, is an Einstein space. Now observe that when

N = 2 we have

(4.8) le = le + ,\2(1gij ,

(4.9) R=e 2 (R+ 2,0)

(4.10) gij = gij[R + 2Azn] ,
so that we have

(4.11) R..-R..-g. R-g,.R) =0

. ij i3 ~ 2713 i3 ’

or using the definition of S1j ,

{4.12) S.. - 8§ =0

1) 1]

But since V2 1s an Einstein space, the elimination scheme leading

to a conformal curvature tensor fails at this stage.

A and C_... in (3.33) and (3.34) are undefined
13k hi jk
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On the other hand is well known that every v, is locally conformal
to every other V2 .

Now we discuss N = 3

The dimension N=3 is much more complicated than the
dimension N = 2 . Nevertheless, the elimination procedure fails to
.' .
lead to a conformal curvature tensor and in fact we show that the :ﬁ::Q{
y:,‘n,\ X
conformal curvature tensor discussed in %3 vanishes identically in a :,:ﬁ:
)
v, . A
3 T
A
Before we show that the elimination method fails when N = 3, }ﬁ:ﬁ}
LA
we derive several canonical forms for the curvature tensor in a V3 QI::‘
The simplest derivation of a canonical form for Rhijk in 8 vy is &:“5*
Se e N
N
due to WILKES/ZUND(1978] who complete a problem in McCONNELL{1931]). f;;::
. . NONTAS
To do this we employ the Levi-Civita dualizors ele and contract on ?C: )
| L
| the skew symmetric pairs of indices in the curvature tensor Rhijk , i\?et
NN
viz ?ﬁkid
) R
‘ g
o Pty
| (4.13) P9, Jrsapqrs Vo
AN
| -.',:\'-.
. . ?3\3\-
to create a second-order tensor. ¢ 1P9, JTS is expressible as a Cf\::'
' :-:“o
3 x 3 determinant in the metric tensor gij iftﬁs
-
NS
P . . -"'A-'.."'
1 it is AL
g g 9 s
. . . -.L:-'.
(4.14) P IS < gpJ gpr gps Loy
; L
r s s 3
gQJ gq gq
Upon multiplication of (4.13) by the numerical factor of % and
using (4.14) we obtain
27
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ij _ 1 ipq jrs '
(4.15) st =5 R e R

where S'J  is the contravariant Einstein tensor. McCONNELL([1931] ':fa

calls this tensor the Lam¢ tensor. However, Lamé's work was
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I. 4
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exclusively three-dimensional and since this tensor has applications

.“'. "-'.
3y A4 (AL

il
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in dimensions N # 3, the name "Einstein tensor" seems more

P

| AP

appropriate. Equation (4.15) has an "inverse", namely

o
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(4.16) Rhijk = (hiﬁ jqu

c :S:\{‘.
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Equations (4.15)-(4.16) enable us to write down several canonical
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»
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P A AD
.

.
.

oy
-

forms for Rhijk . First,

- !bf‘:’ «
o
4

(4.17) Rhijk = 9nkSij * 9155k ~ In3Sik

;.{j«

X
'

S

<
Pils

_g.s5 ._-R
9ik>hj ~ 2 Shijk

['s
/

T Y
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which we call the S-representation of Rhijk . Second, from the

%
:
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," v':-}
oy
22,

definition of the Cotton tensor and (4.18) we have

e
N

(4-18) Rpige = 9nktis * 9i5'mk ~ Fngtik ~ Jikthg

which we call the A-representation of Rhijk . Third, upon

expansion of (4.18), or (4.19), we obtain

R
(4.19) Reisp = 9nBiy * 955Bnk ~ 9niRik - JikPhg ~ 2 Jhigk -

which is the most common canonical form found in the literature. It AT
AN
shows that the Weyl tensor, C , vanishes identically in a V -
hik 3 OO
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However, the S-representat: . .i»d the A-representation are more :jxj:$4
TN
R
R
)
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useful, and the A-representation is particularly nice as it does

not involve a factor of ghijk .  Contraction of (4.19) via ghk

does not yield an expression for R,. ; however, contraction of

1]
(4.17) gives
(4.20) Rij = Sij + gijs + Rgij ,
so that
-R
(4.21) S-——2 .

Hence we obtain the Einstein tensor of §&3! Likewise contraction of

(4.18) yields

(4.22) Rij = Aij + gijA '
so that
R
(4.23) A= 7

and we obtain the Cotton tensor!

The crucial step in the elimination scheme in 83 was the

"

solvability of (3.30) for ”13 . When N = 3, (3.31) becomes

' 1 -] 1

(424) ”1] = Rl] - Rl] - Z (gljR - gl]R) - El\lﬂglj
and using the Ccottor tensor © .48 we have

(4.25) goo= A= -i\ng,,,

) 1) 1] 1) 271 745
Substituting this expression 1in \hijk then gives
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. . ;
(4.26) Rhijk = e (Rhijk + Ehijk)
1 20 ~
R O A S e
L ag ) - g (A, - A
27179 5 hi'%ik T Mik
-5 oam -g (A. - A
29ik™M1 ik "nj 7 "hj

1

20
- igthl”] - e A

17%ni4k
Therefore,

(4-27) Rnigk ~ 93ty ~ Ji3thk * Ingtik * 9ikthy T
29 (R - g A~ g A, + g A+ As)
€ Yhijk T %k"i3 7 9i3"hk T Initik t 9ik"hj
but this reduces to 0=0 by the A-representation of Rhijk
(4.18). Thus the elimination scheme again fails to give a conformal
curvature tensor in 3 dimensions.
The foregoing shows not only that the Weyl tensor vanishes

identically in a Vv but alsc that the Cotton tensor and the

3 '
Einstein tensor naturally occur. The former plays an important role
when we consider integrability conditions in conformally flat spaces

in the next section.

55. INTEGRABILITY CONDITIONS AND CONFORMALLY FLAT SPACES

Definition 5.1. 1If AN and vy are conformally related and VN is

flat, i.e., VN is locally isometric to N-dimensional Euclidean

space, EN , then Vv 1% conformally flat. A conformally flat space
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will be denoted by Cy -

We seek to develop necessary and sufficient conditions for a N
to be a C,\J . This problem will be addresed in two parts, first,
N >3, and, second, N=3 . The case N =2 1is not of particular
interest since as noted previously any V2 is conformal to any other
V2

Preliminary to this problem we suppose N > 2 and assume that
the curvature tensor of Vy can be represented in the form

(5-1) Byiak = k¥ * 9i3%nk T Fhi¥ik T 9ik%hj
where

(5.2) X.. =X.. ,

ij ji
and
oo ob]

(5.3) X:=g xij
are to be determined. The representation (5.1) is called an
X-representation of Rhijk . From (5.1) we have

(5.4) R.°=ghkR.=N'X.+g.X—-X..—X..

: ij - hijk =~ "7ij ij ij i3 ’
so that

(5.5) Rij = (N - 2)Xij + Xgij ,
and

1]
(5.6) R:=g Rij = 2(N - 1)X .
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>y
“
N Hence, we obtain
“x
>
= (5.7) X, . = i (R.. - g..X)
s y i3 T N-2y ‘i T 913t o
t: or
.
)
‘\‘
% 1 R
o = —— - —_—
' (5.8) Xij N3 (Rij TIN-1) gij)
% | |
2 We may draw the following conclusions:
)
vy (i) If R, has an X-representation, then it is solvable
. 1]
' for the X-tensor and its contractions.
';j (ii) Expanding the X-representation yields
’l
%
Cal l R
(5:9)  Ryisk = =20 OnRis * 915Fmk T IhiRik T JikFnj
~ - R
- (-1 %hijk’
\l
l We have thus proved
-’
- Theorem 5.2. For N > 3 the Weyl tensor vanishes if and only if the
curvature tensor has an X-representation.
o
€
J
. ; .
/) Let V and V be conformally related. From (3.12) and P
/ N N "'t&'-*‘
; (3.13) we have T
TN,
' o
. . _ NN
3 (5100 Reisp =€ Rk * 919 * 919%mk = Fni”ik e
. = \v...\
LR
= 9ik%h3 7 Fnijkha?) NEE
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and from (3.23) and (3.24) we have

‘f
’

v -,l
AP,

"
'l
l.w
L s

ﬁ -~
i (5.11) Rij = Rij + (N - 2)nij + gij(Azo + (N - 2)Alo)

L)

T
.'
')‘,-1’

b

-, and

.
EAR
)
o ul::“
o
AP |

N (5.12) & = e-Z’(R + 2(N - l)Azo + (N - 1)(N - 2)Ala)

IR I
.

h

Hence we find that

-
. -
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‘.A a4 A X
-' a 5:'l
PN

)

5

(5.13) f;ijfa = g;4(R+ 208 - Lo + (N -1)(N = 2)4;0).
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Eliminating Ao from (5.11) and (5.13) we obtain

'
.Isl

22 2 ¥ AR,

(5.14) oy = 1wy URyy ~ Ryy) ~ amery (9348 — 935R))

(3

>
—

A, L LY

X5 7 %5 2 9338 - e
Upon teplacing this value of i3 in (5.10) we see that Rhijk has

an X-representation if and only if Rhijk has an X-representation.

~

Now suppose N > 3 and let Rhijk =0 . Then Rij =0 and

-~

R =0, so that

TL SNy

-
-
c..
-
"
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b

(5.15) ag.. = _Xl] - § glJAl(Y ,

S,
l‘l‘
P

or

NS ey
Rt A

SN

A

(5.16) Of =00 - X. . —%-g”Atr

A
. "r"
v

«'¢ @ x x LY
o,

L

33

.
IR
-

-
-
a

AT
+ O

LA
) )

N

A IONII AR AN TR oy o € e - P A S R . el

B N e N g S o AT T, e N Y L A N N A S A A R BN “’-:ﬁ;“:ﬁ 3‘
. o 2 > ! > () " 9370 P, WY W TS, o/

WL,



..' L4
l.‘l. L‘.l. <

‘o b e

AP

YO

I Tt D g i S 4

LRl AT

)
~ %

-2

N

AL

[l S Tl A R

PurY

Sag 8 ah Wat ag Nad e Vag igf 4 OV R U U R Y A U U U U U USROS O D L e T e pwyy

Replacement of this in (5.10) shows that Chijk = 0 and that Rhijk
has an X-representation. That is, Chijk =0 in a CN .

Conversely, suppose that Chijk =0 and that o 1is defined by

the differential equation (5.16). For o to exist a4 3 must be

’

symmetric in i and j and a,  must satisfy the following

integrability conditions:

(5.17) ni,j,k - ni,k,j = ohR i3k

It is easily seen that 9y 3 is symmetric, and differentiating

(5.16) we obtain

1
(5.18) Ui,j,k = oi,knj + ni”j,k - Xij,k -3 gij(Aln),k .

Interchanging j and k gives

(5.19) o, . =0, .0
1l
Thus, we have
(5.20) a. . - (7. . =

1
o, 0. -0, .0 + X, .—X..'k+-2-(gik(Alo),

i,kj i,k ik, ij - gij(Alo),k)

j
and using (5.16) and Theorem 5.2, the integrability conditions become
merely

(5.21) X. . - X, . =0

But these follow from (3.46) when =0 . Thus, a function o

“hijk
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satisfying (5.16) exists. If we define VN by gij = ezogij where

aj is the function of (5.16), then a straightforward computation

shows that Rhijk = 0 . Thus, we have the following theorem.

Theorem 5.3 (Schouten’s Lemma) SCHOUTEN[1921]. A VN(N > 3) 1is a

CN if and only if the curvature tensor of VN has an

X~-representation.
We also have

Corollary 5.4. A VN(N >3) 1is a Cy if and only if the Weyl

conformal curvature tensor vanishes.

In 83 we defined the Finzi tensor:

(5.22) Ly =R - Ry e 5(—;_1—) (958 5 = 958 )
and we now observe that

(5.23) Lijk = (N - 2)(Xij,k - Xik,j)
If VN and &N are conformally related, then the Finzi tensor in
&N is

(5.24) L= (N - 21X . - X )

Writing (5.24) in terms of un-hatted objects we have
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(5.25) Lij

which reduces to

(5.26) L.

By the integrability conditions (5.17) on o

(5.27) Lijk

Hence, if

Rhiqk

Yool 7 Ligk

have proven

Theorem 5.5 (Finzi

ijk

's Theorem) FINZI[1922]). In

1]
Z
I
S}
b
!

= Lig + N - 20Xy - 0K, mpopxjm

k ~ %15t 9ix9

- = (. Td.

mp )
+ Loy ka3 T O

—gijg “p 1,3,k

mp _
+ njnik] + (gikg ”p”jm

mp -
gijg Upnkm) + Aln(giknj gijok)

1 1
2 913419 x - 7 9 (M) 5]

+

]
+
Q
>
s
1
o
>
-
J.
+
«Q
-
-
Ne}
3
o
-

- mp
959 "Xk

we obtain

; ) mp
= Ligk * 9%k 7 %55 9ikd R

_ mp -
959 p%km *t ORR 15k

has an then Lijk and

X-representation, = Lijk ;

then R has an X-representation. Thus, we

hi ik

VN(N - 3) the Finzi

tensor is conformal invariant if and only if the curvature tensor has

an X-representation.
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the Finzi tensor is a zero tensor if

VN(N > 3)

In

Corollary 5.6.
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and only if Vy isa CN .

We now consider the case N = 3
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There is no Weyl tensor in a V, .

NB

and sufficient

necessary

obtained

have

we

summarize,

To

Additionally,

to be conformally flat.

VN(N > 3)

conditions for a

L .d-\ --.-J\f- "

we have derived an often-neglected result (Theorem 5.5) on the Finzi

tensor.
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CHAPIER III o
A
TRIPLY ORTHOGONAL SYSTEMS A

%1. TRIPLY ORTHOGONAL SYSTEMS OF SURFACES

Since a point on a surface is determined by two parameters, a

point in space may be determined by three parameters or curvilinear

-
coordinates. In E; , for example, we may transform our Cartesian }i}ﬁ:j
4 i 1 2 3 . T
\ X" = (x7,x7,x7) by means of the equations NN

(1.1) xt = x%u,vAn

1 e . “
where u” = (u,v,w) are curvilinear coordinates. The surfaces ot

0 = = = + L -‘:t'
N u C1 Y C2 , W C3 , where Cl' CZ’ C3 are constants, are the :J;::

) LA
: : . . » :' - e

N coordinate surfaces and they intersect in coordinate lines. Examples KRR

a - -..'-{

" - . . . . .l \.-

are cylindrical and spherical coordinates, i.e., Cor

[}

2

»

.
s

W
3 o e e
NN
i ]

(1.2) x1 = u cos v , x2 =usinv , x =w

A

s
Pl

Taray
I'd
.',s'*'-.

and

0
H
»

YA N

’

AT

1 2 , 3 .
(1.3 X =UucCosSvVCosw, X =ucosvVvsinw, X =usinv,

NN
FITAR
AN
o

P
%
L

respectively. The line element in our space will then take the form

A
XX

oA

. "' [ '
2"

»
LA

e A

[ .
A (1.4) ds® - o ’—"a IX_ 4y"gu"
;- 3 o™ au

1
e

S
2

'I.I.l.l.l'l 3

»

Of particular interest are those coordinate systems for which

(lxi t'Xj

(1.5) 6, — — =0 nznm.
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4 e
o,
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) ,:_-.5\
! In this case the line element becomes TN
. f'_.'
- o
v L o L oS
b a1 0] ol 03 i .3 N
(1.6) d52 -6 Ix_ dx’ 4.2 dx Jdx® 42 dx” Ox 2 AN
. : ij| du dJu du av aw_ dw ’ - L
3 2,
S L YN
- and the guantities N
~ ot
P ::.',..f
~ PN
i ixt ox) sz
\ b, X UX (NS on m!)
. ij ,m .. m
w du Jdu
‘-
~
N
~ are conventionally denoted by
N
]
r. i ]
- i ’
~ (1.7) h 2 iea, 9% 9% (NS on m!)
N m iy . m . m
N du du
v,
",
"'.
i so that
T,
“ AN
¥ _ BN
 , 2 v,
(1.8) ds‘ = > h “au" e
", m m AL
J) '.‘_\I'.
Se2ed
2 2,2 ’
i, = n2au? + n%av? + hdw
~ 1 2 3 RASARY
'.' ... ..'-
- R,
. . . -
- and the functions hm are called scale factors. The coordinate 1\{..
- - T NN
'.
: surfaces of an orthogonal coordinate system give rise to a triply My
r.'. orthogonal family of surfaces. The simplest example are Cartesian, :-;';:l;'\
", A ,p‘:_-
'; cylindrical, and spherical coordinates where the coordinate surfaces L\::'.::
v -"_-\_-
Sy
: ate respectively planes; planes and cylinders; and planes, spheres, fafnt
5 and cones. We give one less trivial example. :\:-\.';‘
3 LA
. :\;\:‘
d Example: Confocal quadrics are given by N
h’ ’
.
2 2 2 -
3 - -
: (1.9) R AR A R
. 2 2 2
:, a’-u b"-u u
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ellipsoids, when a° < u < b° it

gives

(1.9)
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represents hyperboloids of two sheets.
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ds? = h,2au? + hzzdvz . h32dw2 ,
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where
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We now give a proof of one of the fundamental theorems on triply

orthogonal systems.
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Theorem 1.1 (Dupin): The curves of intersection of a triply

orthogonal system of surfaces are lines of curvature on each of the

surfaces. See McCONNELL[1931], p. 216.

Proof. For clarity we present the proof in the form of four

assertions.
Assertion (i): We have
= ,\u,ﬂ = _Ci(l =
(1.12) Tg ha[i A T + 3= a,p 1,2
where Tg is the geodesic torsion, v is the torsion, md3 is the

Euler tensor, 6 is the angle between the unit surface normal and the
unit principal normal of the curve and AY are the surface
contravariant components of the unit tangent vector to the curve.

For a proof of this assertion see McCONNELL[1931], p. 214.

Assertion (ii): 1If a curve is the intersection of two surfaces
which cut at a constant angle, then the geodesic torsions of the
curve on the two surfaces have the same value.

Proof: Since the unit surface normals along these curves make a
constant angle the rate of change of the angles ¢ , 8 with respect
to arclength the unit surface normals and the unit principal normal

must be the same, hence

(1-13) T =T + — =T 4+ — =71

where Ygl and TgZ are the geodesic torsions on the first and

second surfaces, respectively.
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Assertion (iii) (Joachimsthal’s Theorem): If a curve is the
intersection of two surfaces which cut at a constant angle, then if
the curve is a line of curvature, viz rg = 0 , on one surface it is
a line of curvature on the other. See McCONNELL[1931), p. 215.

Proof: Follows immediately from (ii}.

Assertion (iv): If two curves on a surface cut at right angles,
then the sum of their geodesic torsions is zero.

Proof: Let A" be the components of the unit tangent vector of

the curve on the surface and let 7 = ew”Aw be the tangent vector

of the perpendicular curve. Then

(1.14) =h A\ 2 e b A%
a o)

B % B

~
[

N

16 f
« bbékvk bﬁbp

_ 3 &~ foR] a f3
= bﬁ(’“ €, € anwb[}&p P

)
—

a b, p%p., = -1
oy opal g T TTgp

Combining assertions (iii) and (iv) we get Dupin’s Theorem.

Dupin’s Theorem has a generalization due to DARBOUX(1910].

Theorem 1.2 (Generalized Dupin): A necessary and sufficient
condition that a third family of surfaces can be associated
orthogonaily —— viz be a component of a triply orthogonal system —-
tc a given pair of orthogonal families is that every surface of the
two given families intersect each other in a line of curvature.

We postpone the proof of this theorem until Chapter IV %5, but
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we note that Generalized Dupin implies Dupin and that Dupin furnishes

the necessity of Generalized Dupin.

2. THE CAYLEY-DARBOUX EQUATIONl)
Let E denote a three-dimensional Euclidean manifold having

3

the line element

(2.1) ds? - gijduiduj ,
where gij = hihj are the curvilinear scale factors and
u' = (u,v,w) are local curvilinear coordinates which are functions
of the Cartesian coordinates xi = (xl,xz,x3) . Following
DARBOUX[1910] the -equations u = Cl , Vv o= C2 , W= C3 , where
¢,» ¢y, C; are constants, are said to define a Lamé system of

surfaces, i.e., a triply orthogonal system T~ , in E3 and each
equation defines a Lamé family of *~
It will be convenient to work with the functions u,v,w : Ey =~ R

and to denote partial differentiation with respect to the coordinates

x* by subscripts, viz. ug Uij

uji , etc. We will use Cartesian
tensor notatinn: Latin subscripts range from 1 to 3 and repeated
subscripts obey the Einstein summation convention. The Schouten

bracketing convention 1is employed to denote symmetrization and skew-

symmetrization on subscripts.

lA version of the following material will appear in Tensor, N.S.
ZUND/MOORE({ 1986 ] .
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The orthogonality conditions for the curvilinear coordinated

surfaces can then be written

(2.2) =uv, =0, 9y3 = VW, = 0, 9y3 = WW; = 0

912 7YYy 3T Vi i%i

It is important to observe that the conditions in (2.2) are symmetric
under a cyclic permutation of the parameter functions u, v, and w .
We extend this observation to the symmetry principle: for any partial
differential equation obtained by differentiation of (2.2) with
j

respect to x there are two analogous equations which arise by a

cyclic permutation of u, v, and w .
Suppose that the Lame family is defined by the surfaces

u=_~eC Choose any one of the equations (2.2) involving u , e.g.,

1

u,v, = 0 , and differentiate it with respect to x3 s

(2.3) u.v.. +u..v, =0 .

We note that (2.3) allows us to replace the second partials of v
with second partials of u and we call this the replacement
property.

Contracting (2.3) with wj and employing the symmetry property,
we obtain two analogous equations. Upon adding two of these and

subtracting the third we have

(2.4) V,.W., U

(i¥9)%5 f YavYig T Vi T

But since this expression is symmetric in the subscripts i and j ,

it reduces to

(2.5) V.Ww.u, ., =
1]1)
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M Now calculating the partial derivative of (2.5) with respect to x ,
Y
g
i}é contracting the result with u and using the replacement property
!
v on the partial derivatives of v and w yields
L
% (2.6) A..v.w. =0 ’
o i37173
=
e where
% fin
{: (2.7) Aij 1= usuijs - Zuisujs . :__::_:
L o, ’\r‘.
\: J,:__-..
B . . ) . u
SN Equation (2.6) may be regarded as a linear equation in the six .'__,"'_\,:-
unknowns: N
N Y
o Tt
> RN
- (2.8) X.. 1=V, .w. SO
- i] (i73) R
—~ [
o and to emphasize this, it is convenient to re-write (2.6) in the form N
\‘: L&
2 e
: (2.9) A,.X..=0 -
, 13 1] ~
- n
- I1f the unknowns xij can be eliminated, we will obviously obtain a AN
. X
~" . . . . . : \ A
. third-order partial differential equation involving the parameter N
W LN
! *‘ . . . s . . . < -'.‘
o u . To effect this elimination by a determinant we require five -:';-'_\'Il
: additional equations involving the Xij . It turns out that these Y
N :‘m':\l
::: are easy to get. First, by using (2.8}, (2.6) can be rewritten as "_
«' :..s'\j
. N\:‘.-l
> (2.10) u, X, =0, =
- 13 1] =
ra ~a
-, oS
» and by using (2.8) we also have ‘;'_'.:f:l-;
C LR |
. j-f_'f|
G PN
(2.11) X.. =0. |
N 11 G
.‘ .c.“-\.
- ST
Al --.f "
:: The remaining three equationg are given by ,;-,’::E:
* '-\-
: o
. DI
k2 s
2 PR
! s
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(2.12) uX..=0,

by virtue of the orthogonality conditions (2.2).

elimination is given by the determinant

Ajp Byy  Byy 2R3 2Ag

Uy Uy Uzz 23 Uy

1 0 0
(2.13) u 0 0 u,

0 u, 0 u; 0

0] 0 ug u, Uy

write (2.13) as a difference of determinants

u u 2u

11s 22s 33s 23s
upp o Yy Y33 23
1 1 1 0
(2.14) O = u, ) 0 0 0
0 uy 0 ug
0 0 u3 u2
Y1s¥1s YsY2s u3su3s 2uZsu3s
uyy Y2 u33 2Us3
1 1 0
-2 vy 0 0 0
0 u, 0 uy
0 0 uy u,y
47

-----------

which is the Cayley-Darboux equation. Substitut

Thus the desired

27,
2uy5
0
u2 =0
Y
0
ing (2.7) we may
2u315 Y126
2uy) 2y,
0 0
U3 )
0 ul
ul 0
2uz Uy 2up Uy
2u31 2u12
0 0
U3 )
0 ul
ul 0
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It should be noted that these equations show that the Cayley-Darboux

s
LS
, 28

>

equation is linear in the third partial derivatives, cubic in the

\J'\-

3

second partial derivatives, and quartic in the first partial

y

derivatives of the function u . An explicit form for the

Y YN s
‘J_".‘.’I..’
)‘,‘ o

Cayley-Darboux eqguation can be exhibited by expansion of the

“r
&5 5

a3
22
£

determinants in (2.13) or (2.14) and the results may be written as

’

3 2
(2.15) 2 {(usuaas - 2u“su”s)[uﬂ uvu M U/Ju‘v uwn

a,fB, ,
+ U u 2u ~ (u 3u +u 2u u,. +uu 2u ) S

a v [ 1 af B TrTaf3 a3 B 2

W
+ uﬂuﬁuw(uﬁﬁ - wa)] + (usuaﬁs - uosuﬂs) ;E ‘
e
2 2 e
[(u_ -u - u SN
Ty B{i)un * (uaa u'n) 3 .:-_.’-:
2 2 2 ol
+ (uan - uﬁﬂ)u + 2((u0 + u )uﬂuﬁn ii::
2 2 _ oo
- (uﬁ + Y )Un wa)]} 0 }::
ST
-\'

where the summation sign denotes the sum of a cyclic permutation of

LTTTS PO

N
o,
the Greek indices «a, 3, v over 1, 2, 3. |Inspection of (2.15) -
Ay

-
shows that the Cayley-Darboux equation contains 324 terms. The most Eﬁsﬁ
N,
general example given in DARBOUX(1910] contains only four terms. ':j
AN,
%3. THE THEOREM OF LIOUVILLE e
S
-\- -
Using the tools we have developed in this Chapter and in Chapter e
v
AN
I1 we give a concise proof of one of the most amazing theorems in o
geometry and analysis. ;:7
e
e

e e e e,
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Theorem 3.1 (Liouville). The only conformal maps of Ey

N ) .
: EN(N 2 3) are similarily transformations (isometries and homothetic VY4
N

maps) and transformations by reciprocal radii (inversions in a DA
)

sphere). NN

O
vy y
Y

This is in sharp contrast to the case N = 2 where there is a o

:

P

rich supply of conformal maps. We give a proof, due to BIANCHI[1910]

)
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P A AL/

» ')4
L

ey
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using the Lame equations, that is valid in three dimensions only.

f;;¢”
oy
- %

For a proof for general N see DUBROVIN/FOMENKO,/NOVIKOV{1984].
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Proof: 1In a triply orthogonal system, ul = (u,v,w) 1in E3 the A

h 3

line element has the form ?:*J:

(3.1) ds? = h.2du? + h.%dv? + h,2dw g

KX
.

where

RIS
]
L

v
Sl

dsu = hldu

~
‘e "2
P

(3.2) dsV = hzdv

dsw h3dw ;

L9
A

.
r
s s

are the respective arclengths along the coordinate lines.
The Lame equations are s’ -0 and following McCONNELL({1931],

p. 156, we have
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1 1
hio3 = hy hyshyp + by hyohys
(3.3) ho.. =1 h. h.. + i h .h
. 231 = Ry Ma1fas t R st
1 1
3o = hy hyohyy + h, hy1h3;

]
=2

where h We also have

ab ‘= "alb and b, := halblc ’

1 1 1

o Pty * o)y *+ T hyghy3 = 0
1 2 hy
1 1 1
(3.4) (= hyy), + G=hyp)y+ 5 hyhy =0
2 3 h,
1 1 1 )
(Eg hyglg + (HI hyphy # 2 h3ohy, = 0

The Lamé equations are necessary and sufficient that the quadratic

form (3.1) be reducible to

(3.5) as? = (@xh)? + (@)% ¢ ()2
where x' = (xl,xz,x3)
i 1 2 3 . . .
Let x" = (x",x ,x”) be a local coordinate system in E3 , with
x' = (x /X ,x3) the coordinates of the image of x under a

conformal map, viz.

(3.6) x- = fi(xl,xz,x )

Then the conformality of the mapping E, — E

3 3 requires that the

ratio
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-
variable.
s
:'. Two cases occur according to whether -
‘l
y (i) k=0 or (ii) kz 0
L]
“'. . . -
In (i), k=0 implies X=Y=2=0 hence X, Y, and 2z are
K
)
) constant, and therefore
o
N
~
A (3.13) N = const.
1 .\.:_-.:‘
- This is the case of a similarity transformation, and f : E, — E ROy
P 3 3 A J“
- . o
-, is an isometry or homothety. . RS
o N
¥ | 2UX
In (ii) it is convenient to write k = 2/c where c # 0 1is a
- "r "
-, constant. Then integration of (3.12) yields
-, ]
L A
- X == ((x1 - al)2 + bl)
Cc s e
B, _'{'_.--
- " ,:." o
K- (3.14) v =L ((x% - a%)? 4 bh e
" C N A
. -.'.r,'.‘
~ DA
RS
Z == ((x3 - a3)2 + b3)
- R
N
2 But (3.12) also requires ot
- Nave
~ %
< Wt
y (3.15) S R P M LIPS DU L “i.-
: 3 RN
1 e
S xt - ah?, -
i=1 Rt
) £
Fd viz. -‘x."
: .:-:.:4:
Y A
] 3 i ‘-'j.‘:
v (3.16) b =0 N
i=1
X NG,
K AL
Ty Thus, :}:j
L A ‘)
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(3.18)
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(3.19)
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which are the formulas for transformation by reciprocal radii, i.e.,

f‘

inversions.
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Hence the theorem is proved.
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CHAPTER IV

DIFFERENTIAL GEODESY

%1, INTRODUCTION

Martin Hotine in HOTINE[1966b] and in HOTINE({1969] sets forth
the hypothesis that any sufficiently smooth function ¢ : Ey - P
with non-vanishing gradient can be a member of a triply orthogonal
coordinate system for E3 .  Hotine notes that this is at variance
with classical differential geometry, which states that for a
function to be a member of a triply orthogonal system it must satisfy
the Cayley-Darboux equation of Chapter III, %2. Hotine then asserts
that this equation 1is an identity when the Lam equations are
satisfied. See Chapter 1III, *3. Although it 1is difficult to
determine when the Cayley-Darboux eguation is satisfied we shall
develop machinery, in particular, Ricci rotation coefficients, that
will help in this question.

Hotine wants his assertion to be true since in geodesy the
primary object of study is the shape of the geoid. If its potential
function were a member of a triply orthogonal system, it would
automatically provide a natural physical coordinatization of 53 for

the geoid. Unfortunately, as we will show in this Chapter, Hotine's

argument is false and his hope for such a result cannot be realized.

*2. CONFORMAL MAPPING AND ISOMETRIC IMMERSION

Throughout this Chapter, Greek indices range from 1 to 2 and

Roman indices from 1 to 3.

Let V3 be a 3-dimensicnal F:emannian space with metric tensor,
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gij , curvature tensor Rhijk , Ricci tensor Rij , and Christoffel
K .

symbols rij . Let V3 be conformally related to V3 with metric
tensor
/|
(2.1 gij = e gij p

where o : V3 - R 1is a smooth function. Let V2 be a 2-dimensional

subspace of V3 with metric, or first fundamental tensor,

J
i jxa x[}

’

(2.2) aaﬁ =g

FFF Y P 7P 7MY ... s A T HE S %YV R T O & s v . e wm———

where xl(ul,uz) is a parameterization of V2 , and

i ax i
(2.3) X~ = .
(84 a
du

Equation (2.2) requires that V2 be isometrically immersed in V3 .

~

The obvious question is whether under the conformal map, is vy

~

isometrically immersed in vy ?

First, we have

- _ - i3 20
(2.4) auﬁ N gijx(lxli =€ auﬁ

so that v, and v, are conformally related. N.B. : As in Chapter

II in defining the conformal map we impose the same local coordinates
on both Vv, and v, , i.e., x' =x .

3
Let vy have unit normal vector, ¢ , with covariant components,
. 1
§i , and contravariant components, £ . Under the conformal map we
have
55
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(2.5) E.=¢ ¢, ,

and

(2.6) eh = e ¢!

By Gauss’'s formulae we will deduce the second fundamental tensor bn“

-

of V2 . Using the notation of Chapter II to denote covariant

differentiation, we have

“n,_ n n

(2.8) € bn[i = _ € n/faa“) ,

and
on_ n o’n

{2.9) ¢ q“i= € “%ﬁ ~ 0 %dﬂ e € (qdi_‘CfQﬁ” .
where n/f = nifi

Hence, we obtain

" 24

(2.10) by =€ (B =7 cap)

We must now check that the formula of Weingarten holds in V3
i.e.,

(2.11) fn _ _aﬁw‘ n

He afi’

By direct calculation we have
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n _/n i_ -0 .n n n i
(2.12) ¢ . =¢ ;ixa =e (€ i + 6iU/§ g §i)xa '
where o := ghjo » SO that
-n -, N n
(2.13) f;u = e (f,a + n/fxa)
However, we see that
B n___-o_fh n
{2.14) -a anx1 =-e ‘a (qﬂ3 n/faaﬁ)x1
—7 n n
= -e (f'(Y +- O/f -
-, .Nn n

= e (f,a +n/§ x“) ,

and thus, Weingarten'’s equations are satisfied.

We now check that the equations of Gauss and Mainardi-Codazzi

hold in 03 , i.e.,
- S S - h i k
(2.15) R g s =B By = By Bs + ByisXa¥s®i%s
- . - choi j k _
(2.16) ba{?;w - b(n;[) - Rhijkf xax[ixv =0.

Equation (2.15) is the Gauss equation and (2.16) are the equations of

in the usual way using (2.2),

Mainardi-Codazzi. We verify these

(2.10), (2.11), and
n n " 3 “abh on’
(2.17) xu;[i;w T X T R afty a X a3y

Employing (2.10) and (2.11), (2.17) becomes
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RICCI ROTATION COEFFICIENTS IN V3 AND V3
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$ st

a set of unit

.e.,

i

denote an orthogonal ennuple,

{e,}

Let

ERC A

where the

i
e
a

vectors which are orthogonal and have the components

Then we have

is a contravariant tensor index.

"ill

index

& -.‘»-\

\\ccvx
T.vv.n

1

L A

b
P IR AL

(3.1)

ks

\A‘.

if a# b,

0

L e l"I.I

J
b

ij a

g.

(3.2)

1index will be written adjacent to the

By convention the ennuple




letter denoting the vector. The letters a-g will denote ennuple

indices and h-p will denote tensor indices.

Definition 3.1. The Ricci rotation coefficients are given by

(3.3) Y 1= e

eiej
abc ai,j bc’
NB: The Tape are invariants under coordinate transformations but

not under ennuple transformations.

The rotation coefficients are interpreted as the rate of

rotation of the ennuple vector &, with respect to e and e. -

~

The rotation coefficients are related to, but not identical to the
Cartan structural coefficients.

It is easy to see that

(3.4) aab = 0, {NS)
and
(3.5) T abe + wbac =0 .
Under a conformal map vy o vy the components of (ea}

transform as

€ai T € Gai ¢
(3.6) { -
1 -7 1
e = e ,
a a
where o is the same function as in (2 1). We now compute the
59
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- ~ ~

rotation coefficients, abe ! of the ennuple (e_.] in V3 . By

direct calculation we have

- A ~ e

€ai,j = %ailj ~'ij %ak

1

= (e eai)lj e {ij €k
a .k k
=e (ojeal + eailj - Ty €k 6iajeak
b.o.e knb e_.)

71%ak gijg m ak
=e(o.e_. +e -0 ~o0.e ag e )
- 73%i ai,j j-ai i~aj gij ma
= e’ (e - o, )
B ai,j " Y%i%j T 9%’ *

i
where o := o.e_ . Thus, we have
/a i a

(3.7) e . . = eo(ea. . ~0.e

Moreover, we have the equation

i o, i i i
3.8 e . =e (e . —ae_. + 6.
( ) a ;) ( a ,jJ 7 aj 3”/3)
by virtue of
{3.9) gij;k =0,
and
(3.10) gl = 0.
Hence, we find that
=)
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and

( 3 . 12 ) Y = eﬁ("y B '.:":,.'-}.

when a, b, ¢ are distinct.

& &
VAV

We now give a definition that we will need in the rest of the

’ Chapter. Pau g

. . . e
Definition 3.2. A congruence of curves in Vy 1isa family of curves e

such that one of the curves of the family passes through each pcint

of a chart of VN . ,:,

v~
=
4

’2
.

If € is a vector field defined on chart of VN , then the

“'a
L
s .
I‘

’ s './

&avfﬁ -

integral curves of § define a congruence of curves and the vectors

v
,
oA

¢ are the tangent vectors to the curves of the congruence.

%4, OTHER CRITERIA FOR CONFORMAL E‘LA’I'NESSl)
1 In Chapter II, %5, we showed that for N> 3, N is a CN if
, and only if the Weyl tensor Chijk vanishes; and that for N > 3 VN

) is a CN if and only if the Finzi tensor Lijk vanishes. 1In this

lA version of the material in this section has been submitted to
K Tensor, N.S.

b W P Nt A AT Y Y TN T e T T T e O P T R N PR SR . -y - - oo -
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section we will give criteria for conformal flatness involving

orthogonal ennuples.

Theorem 4.1 (Schouten-Eisenhart) SCHOUTEN[1921] and EISENHART(1949].

VN is a CN(N > 3) if and only if for every orthogonal ennuple

{ga}

h

k
Rabed *~ Fhijk®a

i3
(4.1) s eC e4

for distinct values of a, b, ¢c,d=1, 2, ..., N .

Proof. The first half is easy. If Vv is a C then

N N
Chijk = 0 so that
o h i 3k
(4.2) Cabcd *= Chijk® b Sc' & - 0 -
and we have
(4.3) R, = - = _ g + g R
: abcd N-2 gacRbd adec bd ‘ac

R
" IpcRad) ~ =17 %acbd ~ 9ad¥bc’! ¢

and for an orthogonal ennuple we have Yab = %ap - Thus we have that
Rabcd = 0 for distinct values of a, b, c, d .
To establish the converse we must first exhibit the ennuple

components of the Weyl tensor. For distinct values of a, b, c, d

these are
(4.4) Cabcd = Rabcd !
Al
N S W e S A N v

‘;?:T«‘c':‘a‘::::c‘e‘¢'-'

A
Ry

FaC AR 4

"-;'.(‘r‘x'&\'.
R A ALAY
S )

NN
R .

o« 4‘.1‘.;‘;.:,':’
.}

+

N \'.'.;\' LS
EN) L
SN

s
e NN

{43

WA
\_‘.l‘v'&.
B G AN Y

.l
o

a
f
. ]
—_t " Ak

>,
et et e
»

Bld
v

(
- -y
o

»
XA

e
A
j-’ .r'_'t

.
'y
‘’

2
£

‘
“ay
_ e

[ 3

[ dne iy ] l.' l'. n.. »/ -j
.ll.:l:,q. ","':'I& .
1] a4 .',.I"l &% _SJJ




[}
[3
(3

e,
»
(RS
'.-.'1.‘-‘-"\
-.3',-._‘:&::
N
) NI
Vg
1
(4.5) Cabad = Rabad * N-2 Fog (NS)
(4.6) C... =R, +<i (R, +R_)
: abab abab = N-2 Rbb aa
R
- (N—l)(N—Z) ’ (NS)
Y
: where
ol
| R e b ]
(4.7) Rp = Rijea ey
\
g Hence, we have the equations
S
: (4.8) Rabcd = ,
! 1
H (4.9) Rypad = = 53 Rod * (NS)
a 1 R e
: (4200 Ropap =~ 57 Bop * Faa) * D+ (W) e
p s
; These are easily seen to be equivalent to ’\',
I
4 (4.11) R =0, AT
9 abcd et
> RSN
A
= A
(4.12) Rabad = Rcbcd . (NS) R
)
(4.13) Rabab * Rcdcd = Racac * ]bdbd (NS)
from which it follows that all the components of Cibeq 2are zero.
We now give a more geometric criterion for VN to be a CN . L,\,\f::
RS
This was first established by RICCI[1918) for N = 3 and generalized ;‘::E‘
e
by FINZI[1922]) for N > 3 . RN
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Theorem 4.2 (Ricci-Finzi). V isa C,, (N, 3) , if and only if

N N

there exists an orthogonal ennuple of {ea} such that the

correspondence congruences of curves {Ia} (curves having tangent

vectors ?a) are normal and isotropic, 1i.e., their rotation
coefficients Y abe satisfy the respective conditions:

(4.14) Yabe = 0,

(415) ‘rabb = ‘,aCC (NS)
for distinct values of a, b, ¢ =1, 2, , N

The condition (4.14) for normality imposes N(N - 1)(N - 2)/2
conditions on the ' abe and has the usual meaning, viz. that there
ex1sts an N-tuply orthogonal system of (hyper)surfaces {Sa}
“r*hegonal to the respective congruences {Ia} . The isotropy
znditions 14,150 impose N(N - 2 additional conditions on the

Cane and by the familiar geometric interpretation of the rotation

effis1ents this means that each !a is turning, i.e., "rotating",

1t the tate 1n each of the directions eb (b # a)

Same

specified by

the thet congruences | Thus (4.14) and (4.15) reduce the number

b

:f independent 1otation coefficients from N2(N -1)72 to N

Rice1 proved this for N = 3 by directly integrating the system

nf equations g1ven by (4.14) and (4.15) and noting that the resulting

space was a For N > 3, Finzi observed that (4.14) and

-3

t4.151, when substituted 1n the rotation coefficient expressions for

Rahcd '
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Thus, since p and » are arbitrary it follows that

e
.
P

E-‘

v

P
(]

~
l'\"

AN

(4.21) (NS)

5w
o
e

T l\.
v
EA AN
: I.I

for distinct values of a, b, c. However, (4.21) holds for

- v Y
A t}\.\

a, b # ¢ and upon summing over a we have

(4.22) S L = ZLbbC p (NS

but the left-hand side is identically zero by the doubly contracted

A
oY)
"J' ", '7"}::-

’
v
?ﬁ'f

differential Bianchi identity. Thus Lobe = 0 for distinct values

"y
s

b

e
hY

of a, b, ¢ 1implies Liac = 0 for a g c . Therefore, Lobe

X

]

for distinct values of a, b, c requires that the space 3 be

ol 2
5§Q :
\I
——

conformally flat. The converse is obvious and our proof is complete.
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The relative effectiveness of the Schouten-Eisenhart and Ricci-
Finzi criteria can be easily seen. Suppose VN(N > 3) 1is given and

1t is required to determine whethe: VN is a CN . By using the

Schouten-Eisenhart criteria (Theorem 4.1 or 4.3) we would choose an

orthogonal ennuple {ea} and test for R =0 or =0 . If

abcd Labc

Rabcd # 0 or Labc # 0, we are done and VN 1s not a CN . But if

R =0 or for e } , or even for several different
abcd ~a

ennuples, there is no guarantee that Vy s a Cy since the theorem

requires that this must hold for every orthogonal ennuple. The

Schouten-Eisenhart criteria can easily determine whether VN is not

- L. I I Iy S ] LI PR S ~
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a CN by a single choice of ennuple, but in practice they are :::f:r
inadequate to determine whether V. is a C, . ,V“a'
N N AiSS
S N
On the other hand, the Ricci-Finzi criterion proceeds by itif::,
- T
) -~ _.\ ~ 3
attempting to solve the system of partial differential egquations :f:f:;:

r

Pl

(4.14) and (4.15) for the {ea} . Upon converting these to A~

v

coefficients (in the notation used by LANDAU/LIFSHITZ[1975])

o
R
9 o
P
‘.:1"1 5%

A

(4.23) A =

vy @

e
RRNA
[

abc ~ Tacb '

%y
A
o

R0
2

5

where

5"}": ~‘f Lot N ¢
.

’

A - A ) /2

(4.24) K abc + bca cab

abc © (A

o
-~

one can employ partial derivatives, and avoid computing Christoffel

symbols of VN - Equations (4.14) and (4.15) are equivalent to

\_; i}‘
I
(4.25) Nabe = 0 ¢ .;:ji:{
.. Y
el
S
= .\h ) ¢
(4.26) Nbia Acca (NS) ;¢aﬁ,.
v,
for distinct values of a, b, c=1, 2, ..., N. 1If a solution of ;:;.
'.';:.f-“
these equations can be found, then vN is a CN .  Moreover, the ;3:
‘J':.
Ricci-Finzi criterion then produces the "nicest" ennuple (ea} R » _
- POLAEN
G A
i.e., one which is directly tied to the geometry of VN , and when 3“:*?-
.”-‘_“.”-
AN
YN isa C; a solution of these equations is guaranteed. g:: o
tata™
®
NI A
R
%5. NORMAL, GEODESIC, AND CANONICAL CONGRUENCES. _\:.‘_\-_.:-. ':
N . | . R
Definition 5.1. A congruence of curves ! 1in v3 is normal if the N2
e
unit tangent vectors to the curves of the congruence are the unit !ﬁ -34
- '..*
normals of a family of surfaces. ﬁ?
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Hence, if §. are the co nents of the unit tangent vectors of
i mpo

?.
vy

hY

¥
Xy

P s
5
o,

[

a normal congruence of curves, then there exists a function

.v.

¢ : V, = R such that

3 e
A

,'.':,',\'_

= = = e \-q

(5.1) A T L g
LA )

a2

In other words, the unit tangent vectors of a normal congruence

are proportional to a gradient. -
AON
. '.‘. y

Suppose that {ea} is an orthogonal ennuple in v3 . The R
~ s

SN

conditions for the congruence ]a defined by e_ to be normal are
~C

well-known to be

(5.2) Tabe =0,

where b # c¢c and b, ¢ # a . See EISENHART(1949], p. 115.

Definition 5.2. A geodesic congruence of curves in V, is one such
that each of the curves of the congruence is a geodesic. That is, if
Ei are the components of the unit tangent vectors of a geodesic

congruence, then

(5.3) €. .63 =0.
1,3

s
1f {ea} is an orthogonal ennuple in V3 , then the conditions NN
) N

. . o o

that € defines a geodesic congruence ’a are e
~ ."u
I

N,

(5.4) v =0, (NS) e
baa N

gt

O

e

A\-' A

(233}

AR
.- A q' .

NG

e e e e e e s e A At A N e e e




POl

Chl M i gs g

where b =1, 2, 3. See EIGENHART[1949}, p. 100. For s to

define a congruence of curves that is simultaneously normal and

geodesic it is necessary and sufficient that

{ =
\5.5) eai,j eaj’i

See EISENHART[1949}, p. 117.

Suppose that ¢ defines a congruence of curves denoted by

32). We will construct two new congruences ’l and 12 with unit

tangent vectors A and p , respectively, using the method of

)

RICCI[1918].

Let Ei be the components of € and define

o) —

(5.6) X, . :=

i, (6. . +&. .) .

i,3 jei

Consider the system of equations

(ECT =0
(5.7) \ i
(Xij - :.‘gij)g + |1§j =0,
where « and . are scalars and (l are the components of a

vector. The equations (5.7) have the determinant

21n the following discussion it 1is convenient to number

congruences in a mannet which corresponds to our labelling of the

ennuple vectors {ea}
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{(5.8) =0
X3 70913 Koyt vd3 K3t w9y &

which yields a second-degree polynomial in « . The roots of this
polynomial are real and when they are inserted into (5.7) determine

two real congruences of curves I, and 12 having unit tangent

vectors » and  , respectively. If the roots are unique, then &

and p are uniquely determined. Regardless of whether A and o

are unique, they are said to be canonical with respect to £ , and

' and I, are said to be canonical with respect to [ 3 - An
example of the calculation of canorical congruences is given in the
appendix.

We now determine conditions on the rotation coefficients of an

orthogonal ennuple {ed} when the vectors of the subset {eb]
‘b # a) are canonical with respect to e, - From !3.3) 1t 15 easy

to see that

(5.9 “a1 = e g,
'J ‘,71 R
Applying the definition of X + btain
15.101 R ( ) E Lo = 0,
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where ' is the root of (5.8) corresponding to e,_ and

e “b is the

scalar from (5.7 corresponding to ey - Multiplying (5.10) by eCj

with ¢ # a , b and contracting on J we have

(5.11) "abc ¥ 'acb * 0

for bz c and a# b, c . Equation (5.10) also implies

(5.12) “b = "abb ! (NS)
and
(5.13) TR S (NS )
b 2 baa
where a 2z b

In the following we will need to know conditions on the rotation

coefficients of the orthogonal ennuple {eal when ea defines a

normal congruence and the vectors of the subset {ea} (b # a) are
canonical with respect to e, - Combining (5.2) and (5.11) we have,

in this case,
(5.14) : =0,

b#gc and ag b, ¢ . Rodiiquer’s formula MOCONNELL 1931, p. 216

and (5.14} imply that the oo S S are principal
directions on the surfaces n 1l ¢ Co Treen, ey (h » av ate
the principal curvatures ¢ the cdirecton e by ar and
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ub(b # a) are the components of the curvature vector of ea in

4

£
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»

S

LN S
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the subset {eb} (b # a)

PR
LYY
>
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We now have the machinery to give our promised proof of Theorem
1.2 of Chapter III, the generalized Dupin theorem’ . Rl
We prove only sufficiency since the necessity was proved in i

Chapter III. Choose two of the families of surfaces and call them

N and N, . Let Ei be the components of the unit normal € to -35;

b

fl , and denote by 13 the congruence of curves defined by € . We x‘j\
"

employ Ricci’s method to construct two congruences rl and rz with P

P A A
RN

unit tangent vectors & and p , respectively, that are canonical .

with respect to !3 . Since » and p are principal directions on .

i N P
*y » and Sl and ., 1ntersect i1n a line of curvature, then either -
- < Wt

\ or " 1s a principal direction on \2 . Without loss of

[ERP NN TN

o
e
Lo

generality we may choose 1t toc be A .  Since Fl and 52 are ﬁff

{l
Fy

P4

orthegonal, ¢ must lie 1n the tangent plane to $2 , and since ¢ N

ALARAL

1s perpendicular to ', 1t 1s a principal direction on }2 . 7
' -

585

Moreover, y 15 perpendicular to both A and € , and hence must be Fﬁfi
- N % .
a LY

the unit normal to ', . But since ¢ and are principal e

directions on ", , they are canonical with respect to p and by

q

construction 0 and - are canponical with itespect to € . If we

Pl
)

P‘. ’ﬁl‘\(
ES% 5

-

v
'.('v Sy
N
ot

] R
A versieon of the f21lowing material will appear 1n Tensor, N.S. See
MOORE ZUND([ 1986 ).

A
| BN

20
v
]

g
548
E AP A4
4535

- o L o o - e - . . - - - - - . -

e T T e T e e e e e . R R e e
et e T e e T W P
A A A A e A A

" " h - - -
A NS s




4
’g
-
-
..
>
g
3
r 3
3
-
'«
e
>
>
-
-
'
3
»
o
rd
o
g
Q
-l

| 4
&;‘.}‘:
Y %y

AR
Y,

Ed
x
z

Ql{"r (g -4..

h]
Cd

b

h)

LY

label our ennuple {ea} in the crder {\,p,f} , we may express this

~

L4

v
Yy
-

ety

in terms of rotation coefficients as

b

5

.,
TR AP

LA
5%
«

¢
,-,{-,'
S

(5.15)

"
o

.l 'l ‘l
2

Ly

>

2
"
s

"3ab

T
f

Ll
where a#b and a, bz 3, and )

(5.16) T2ab = 0

where a# b and a, bz 2. But by the skew-symmetry of the

rotation coefficients in the first two indices, (5.15) and (5.16)

imply that
(5.17) Yabe = 0
for distinct values of a, b, ¢ . However, (5.17) are necessary and .
sufficient for conditions that all the congruences of curves <
l\‘-
associated with the ennuple are normal. Thus Fl is a normal ‘;:: y
"
e
>
congruence. Hence, there exist a third family of surfaces 53 '."
TN
orthogonal to both El and Sy This completes the proof. :-:::.::‘_.\_
CNT
l"':":_,
NN
".r:;:‘.r
Y e S
Finally, we examine how canonical and normal congruences behave ; v
e
under conformal maps. }’v,.':é’_*_
Lo
l,‘\ M
Theorem 5.1. If Vv, and V, are conformally related and (A,p,€} DA
——— 3 3 RAVSS » {
T
'_x,t__"‘
is an orthogonal ennuple in vy with A and p cancnical with "'".j_'\\:
- - ;{}'::-':!
. . . : . RCSRGRY,
respect to € , then the conformal image of this ennuple in V, is :-;;-;:‘c
] {
defined by N
‘.‘::J':?‘\i
A
:-".r:‘."*:
\J‘ .‘_\-1
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1 1
(5.18) py= €y

z 1%

El = e fl ’

~ -~ N

and A , p are canonical with respect to ¢ .

Proof. Let ~ and - be the rotation coefficients of
abc abc
the respective ennuples in vy and vy . From (3.12) we have that
- %r
(5.19) Tabe = € Tabe

for distinct values of a, b, ¢ . Since A and p are canonical

~ ~

with respect to § we have

(5.20) 7312 * 301 = 0,
and (5.19) implies that
(5.21) T315 * 73571 < 0.

~

Thus A and p are canonical with respect to ¢

~

Theorem 5.2. Let V3 and V3 be conformally related. If r3 is a

normal congruence of curves in v3 with unit tangent vectors ¢ ,

~

then the conformal image I, is a normal congruence of curves in V

3

with unit normal § where € 1is defined by

3
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R o
o {5.22) fi—efi
"
?
<
g4
j Proof. Use Ricci’s method to construct congcuences rl and r2
; with unit tangent vectors A and p , respectively, which are AL
¢ - - oo
';j canonical with respect to r3 .  Then we know that :ﬂ:
-, AR
L -. 'J'.'.f
N (5.22 0 e
e +22) 7312 T "321 ' ]
> Y
b . e )
o - - C o RN
N and from (3.12) we have that Tabe = © Tabe for a, b, ¢ distinct. :;_::;\
_‘. h*‘:' d
. d
" Thus R
’a -
- i
-. ° - !-,l",‘ o
z (5.23) 1312 = "33 = O e
< ':n"‘f ¢
< - - '-Z~‘2’
and § is the unit tangent vector of a normal congruence 1‘3 in PLrts
N vy . ,
bk §6. A ROTATION COEFFICIENT FORMULATION OF THE CAYLEY-DARBOUX vt
. EQUATION
. DTy,
‘ . . -‘ﬁ.—
- Let € define a normal congruence of curves in vy . If X :v\:
~ -~ » 3
? Al
ey
) = and p are canonical with respect to § then —_
N
K., = =
- (6.1) 312 77321 = 0
& : C =
W where T abe are the rotation coefficients of [,‘: on '§_} . The N
‘j ot
{ condition that all the congruences of an ennuple be normal is :f.:-;
) A
) 'I.
A iy
k. (6.2) Vabe = O -
2 AN
2 N
" \;_'."\
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( for distinct values of a, b, ¢ . The skew-symmetry of the rotation %"
[ v, -
'v coefficients in the first two indices means (6.2) will hold when 3::"
[} ‘-I‘ . ,
:‘. (6.1) holds and that Vo
~
;4 S
~? 1.3 o
. . = /\ . . =
- (6.3) '123 i3 ¢ 0 ey
A » ,I'r-
b .
e Since € defines a normal congruence, there exist ¢ : ‘»/3 - P o
3 e
~ such that
e NN
J:' "';‘s '\
N ~
"t (6-4) ¢ = \PE -ia.i
Y. 1 1 Fep A
> I1f (6.1) 1is given, then (6.3) implies that there exist v, ;:'_::
~ . ro
- o~
v & : V, » R such that N
L, 3 s
= N
oA
-~
. =Ry o
8 (6.5) 5
- 0, = 0p, :_'_3
’. b s
o
- 2]
Thus {¢,¥,0} 1is a triply orthogonal system of coordinates in vy "
e a
o Hence, when (6.1) is given, (6.3) is equivalent to the Cayley- A
- M
)" o
= Darboux equation of Chapter III, %3. NN
.‘. f‘d‘r'&
; o
; 57. HOTINE'S CONJECTURE s
) i'.'":‘
:: As stated in the introduction to this Chapter, Martin Hoktine ) ':-\_'Z
'.. *-f‘,"-"
o conjectured and claimed to prove that any function ¢ : Ey - R with Ny
) B non-vanishing gradient could be a member of a triply orthogonal .,-f'::
W '\J'.'i'
! coordinate system. We quote from HOTINE[1966b], pp. 196-198, with R
. S
>, . . , . . b
- minor changes to agree with the notation and numbering of this NOM
- [
" dissertation. ::.\'; :
¥ o
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N
s
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"In HOTINE[1966a), it was shown that the gradient equation of a

scalar ¢ ,

(7.1) ¢, =xv§i

(fi a unit vector), can be transformed conformally with scale factor
#[= €] to a Riemannian space in which the §i become tangents to a
family of geodesics and the ¢-surfaces, that is the surfaces over
which ¢ is constant, become geodesic parallels. It followed that
the metric of the curved Riemannian space (denoted by hats) can be

written in the geodesic form,

(7.2)  ds? = ;aﬁdx"dxﬁ + de2 (@, = 1,2)

(EISENHART(1949], p. 57; WEATHERBURN{1938], p.81). Using the same
coordinates (x",9) the metric of the untransformed space can

accordingly be written as

(7.3) ds? = aaﬁdx"dxﬁ + e g6 (@, fp=1,2) .

"The components of %Ji can of course contain ¢ , but for
different constant values of ¢ will also be the surface metrics of
the ¢-surfaces. If |a| is the determinant of the metric of the
¢-surface passing through a point, then it is clear from (7.3) that

the determinant of the three-dimensional metric at that point is

(7.4) e'z"lal X

Consequently the associated tensor in three-dimensions is
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(7.5) g (2"l %) (t,s = 1,2,3)

afl

in which a 1s the associated tensor of the surface. This can

easily be verified by writing out the metric tensor in full.

"Now any curvilinear coordinate system in three-dimensions

implies the existence of three scalars, or coordinates, whose

gradient vectors are not coplanar. A coordinate line may be defined

as a line along which only one of the scalars varies, the other two

being constant. Each coordinate line must accordingly be

perpendicular to the gradient vectors of the other two coordinates.

xl—coordinate line is perpendicular to the gradient of

The ¢
which from (7.1) is in the direction fr normal to the ¢-surface,
so that the xl-coordinate line (and similarly, the x2~coordinate
line) must lie in the ¢-surface, and (xl,xz) can therefore be

considered as surface as well as space coordinates.

It is apparent from the absence of («,3) components in the

metric (7.3) that the ¢-coordinate line is perpendicular to both the
1

x - and xz—coordinate lines, so that fr is the direction of both

the ¢-coordinate line and the gradient of ¢ Consequently the

gradient vector of x1 , considered as a scalar must lie in the

x2— and

surface, because it must be perpendicular to both the

¢-coordinate lines. The gradient vector of x2 must similarly

1

X and

in the surface. We cannot yet say however that the

xz—coordinate lines are orthogonal or that coordinates can be found
which would make them orthogonal within the framework of the space

metric (7.3).
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in the

(xl,xz)

"We assume nevertheless that the coordinates
metric (7.3) are definable as scalar functions of position throughout
some region of flat space, in other words that they can be expressed

as some function of Cartesian coordinates (x,y,z) independently of

the definition of N , in accordance with the usual meaning of

coordinates in a Riemannian flat space. In that case we can write

Cp, = (x )y
where P, is the unit vector in the direction of the gradient of x1
and C is the modulus of the gradient. Evaluating C 1in the metric
{7.3) gives
2 rs rs, 1 1 11 11
= ( = = =
C g \Cpr)(CpS) g (x )r(x )S g '

and finally

1
(7.6) {x )r = Vall P,
But P, is the unit normal to the xl—surface passing through the

1

point under consideration, that 1is the surface over which X",

considered simply as a scalar, 1s constant.

Equation (7.6) is

accordingly in all respects similar to (7.1). By making a conformal

11

’

transformation to another curved space with conformal factor a
the P, will transform to geodesics, and exactly as in (2) we can

write the metric of this second curved space in the geodesic form
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Transforming back to the original flat space, we have

3]

1.2

(7.7) (dx™)

L
11
a

as the metric of the flat space. We do not yet know what the other

two coordinates dx2 may be in this metric. The two metrics (7.3)
and (7.7) are however alternative ways of expressing the same space
and one must transform into the other.

"Since xl is a scalar function of position in space, it gives
rise to a family of surfaces whose metric can be expressed in the

following forms putting dx* = 0 in (7.3) and (7.7)

2 20 . 2

ds® = ay,(ax*)? + e P

"y
T dx dx .
a

These two invariant forms of the line element at a point of the

surface hold not only over one particular surface but alsc over the

-

~

whole family, so that the coordinates x  are either the same as
(x2,¢) or can be transformed to (x2,¢) . We can accordingly

rewrite (7.7) as

2 2.2 1
{7.8) ds =822(dx ) +;l-l
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which is triply orthogonal in the coordinates (xl,x2,¢) . Comparing

this with (7.3) we have aj, = 0 , which must be so since the

coordinates are orthogonal; and aj) = —%T , which 1is so since
a

A, = 0

"We get the same result by considering the gradient of the other
coordinate xl

"In aiming at this result, we have merely assumed that the
coordinates (xl,xz) in the metric (3) are scalar functions of
position, without otherwise restricting them or the form of ¢
Classical doctrine on the subject asserts nevertheless that ¢ must
satisfy a third-order partial differential equation known to
Eisenhart and others as the (Cayley)-Darboux equation. If the above
reasoning is correct, then the (Cayley)-Darboux equation, which is
shown below to be equivalent to one of the six conditions of flat
space, must be an identity, in which case it expresses a relation
between ¢ and the form of the ¢-surfaces. 1In the main geodetic
application, this would be a hitherto unsuspected relation between
gravity and the form of the -equipotential surfaces. It is
accordingly of considerable importance to resolve this question one
way or the other.

"The remainder of this paper assumes the existence of a triply
orthogonal system derived from a scalar ¢ , and on that assumption
works out its properties, including several which do not seem to have
been formulated before, at any rate in the compact form now given.

If the classical view is correct, these results are valid if ¢
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satisfies the (Cayley)-Darboux equation."
In the next section we will analyze Hotine's conjecture

employing the rotation coefficients formalism introduced in %6.

§8. CONFORMAL MAPPING AND THE CAYLEY-DARBOUX EQUATION

Antonio Marussi was aware of the weaknesses of Hotine’s argument
and makes the following comment in MARUSSI[1985],4) p. 133. We quote
it using our notation.

"We now establish an extremely important fact. The change in
curvature é’Ei depends only on the position and on the direction of
the normal to the surface, and not on the direction of the section on
it. Since it is the same for all these directions, it follows
therefore that the directions of principal curvature are conserved in
the representation. Thus, if a family of surfaces is not of Lamé’s
type in V3 , 1.e., it does not belong to a triply-orthogonal system,

then neither can it transform in V3 . Since the family of
equipotential surfaces of the Earth’s gravity field is not of Lame
type (for it to be so, (Cayley)-Darboux’'s third order partial
differential equation would need to be satisfied), then neither can
be any of its transforms in a conformal representation; there is thus
no possibility of reducing the study of the Earth's potential field

into a triply orthogonal coordinate system."

We will state the above argument in more precise mathematical

4This article was originally published in 1967.
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. ST,
form and prove it. AV

¢
- ~
Theorem 8.1. Let V3 and V3 be conformally related. Let |/

- denote a congruence of curves in Vy - If [ 1is not a normal

N ~

congruence, then its conformal image I in V3 cannot be a normal

%4’ *
)
1)
»

2 d RS
: -ﬂé?

.

-

congruence,

h e T Y 2
e >

e

Proof. The theorem follows by using Ricci’'s method to find two "4 ;C

congruences canonical with respect to ' and by using equation o

i
5

(3.12) and the rotation coefficient criteria in %5 for a congruence

to be a normal congruence. See the proof of Theorem 5.2.

rard A

PR
P

Theorem 8.1 and our derivation of the Cayley-Darboux equation in i;
Chapter 111, 52 show that Hotine’s conjecture is false. In §11, we §$;f?’
will further critically analyze Hotine'’'s argument. EEEE:E

RN
§9, CONDITIONS FOR THE CONFORMAL IMAGE OF A NORMAL CONGRUENCE TO BE !

r

A GEODESIC NORMAL CONGRUENCE i

b N '
o'

S
ALY
In this section we examine conditions on the conformal function R CR LY
°
o that determine whether the conformal image of a family of surfaces ;‘iS§E
- )-\'-_.w ]
in V, can be a system of geodesic parallels in V, . (A system of 5\315
3 3 sdnand
\
geodesic parallels is a family of surfaces such that the unit normals ﬂk; !
[ 4
to the surfaces define a geodesic normal congruence of curves.) :F§jni4
RN
N
\'F\‘"-'.
. \"N":,'-{
Theorem 9.1. Let Vs and vy be conformally related and let o be NG
the conformal function. If ¢ : v3 - P is a smooth function and we
e
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define a vector field € by

av
»
.

(9.1) d. = 4C.

—
-
-
-
»

.,
‘,

i

with ¢ > 0, then ¢§ defines a normal congruence of curves, viz.

~

-’f’x:’ ‘
5

o

S
Al

YN

the curves normal to the family of surfaces ¢ = constant. If A

T';'.’/' ..-
«

and p are canonical with respect to ¢ , then the necessary and

~ ~

s
g
Y,

sufficient conditions that the conformal image of € , ¢ , defines a

e v W Cw
4%
’d. .

LA

system of geodesic parallels are given by

[Tl
55
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<
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o
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(9.2)

©
>
=
'
<
]
3
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=
i
o
-
t.l ’
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’
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where o = w. N, = 9.p , 0 = 0, ! and o :==o.p1 .
/A 1 /p i

,
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Proof. From (9.1) we have X

[

(9.3) o, .=l + 9l L,
5
‘ but ¢, 3 is symmetric in i and 3 so

(9.4) o€, . ~ €.

l,J J;l) = (plej - ‘pjfl) .

Multiplication by §J and contraction on Jj yields

(9.5) 0. €=

. wh = .
t ere ? e {

B AT A R
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The conformal image of ¢ , £ , is defined by

Mo
it
(4]
N

(9.6)

P ,
(9.7) §1;J§ —fi’jg (7i +‘Ei(/§

(9.8) o€, 3 =,

If we write oy and v, in terms of our ennuple, viz oy = Aio/k +
and Py = A then (9.8) becomes

Pi%/p * €19 PP 8T e

~ -~

J_ - -
(9.10) wfi;jf (w/x vo/%)Ai + (w/p 40/b)ni .
If the equations (9.2) hold, then
(9.11) €. 1 =0,

-~

and § defines a geocdesic normal congruence. If, on the other hand,

fi.jfj = 0 , then by the linear independence of A and p equations

(9.2) must hold. The proof is complete.

Corollagx 9.2. Theorem 9.1 remains true even if N and p are not

canonical with respect to ¢
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NB: in this corollary {»,p,§} must be orthogonal.

(4]

Corollary 9.3. If , = e , then eguations (9.2) are satisfied.

Theorem 9.4. The differential system given by (9.2)

is completely

integrable.
pProof. Suppose we choose o = e’ . Then (9.2) becomes
(r. — o ),\1=O ,
(9.12) { i
(Ti —a)p” =0,
and if f =71 - o , then we have
flt\l = O ’
(9.13) { ;
f.p" =0
i
Let {Q'Q'g} = {ga} a= 1,2, 3. Equations (9.13 may e
expressed in the form
(9.14) fet = f =0,

ol =%
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(9.16) f/a/b - f/b/a = i(’cab - )f/C ,
but since f/c =0 when ¢ =1, 2 we have
(9.17) f/a/b_ f/b/a= (’3ab‘ ’3ba)f/3 ,

and the normality of the congruence defined by ¢ = 3 then requires

(9.18) f/a/b - f/b/a =

This completes the proof.

§10. CONFORMAL MAPPING OF A V2

In this section we consider conformally related two-dimensional
spaces. We do this because much of geodesy is two-dimensional, and
also to correct a formula in MARUSSI[1985].

Let V be a two-dimensional Riemannian space with metric

2

. h
aaﬁ , Christoffel symbols FGB , curvature tensor Rhﬁwﬁ R

Ricci tensor Rhﬁ , scalar curvature R , and Gaussian curvature K .

tensor

Greek indices will, of course, range from 1 to 2.

Let V2 and vy be conformally related with conformal function
o . Then the metric tensor of v, is given by
N 20
(10.1) a5 =€ A,

the Christoffel symbols are

I ) 2] I ad
(10.2) F"ﬁ 1= f“ﬁ + 6“ n[3 + 6{3 a. - aﬂna Ts s
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and the curvature tensor is defined by

20

(10.3) ia = e

Br6 Repre ¥ 2a6pr ¥ 3% T ParB6

aﬁéoa‘v + (auéa[h - a(naBéMla) !

where o =0 - o a, . The Ricci tensor is given b
aB *= %,p T %7p 9 Y

A ~E
(10.4) RhB = a Rvaﬁé = Rnﬁ + aaBAZO ’

and the scalar curvature is

(10.5) R = e (R + 8,0

Since any vy is an Einstein space we have that the Gaussian

curvature of V2 is

(10.6) K=e 2K - A,0)

Suppose that A defines a congruence of curves rl in Vv

If A, are the components of N , then p 1is given by

(10.7) p(! - "v()l\

defines a congruence TZ perpendicular to Tl , where €' is the

contravariant Levi-Civita dualizor. See McCONNELL{1931), p. 167.

The vectors A and Iy satisfy the Frenet equations

McCONNELL({1931], p. 185
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B a
A ANo= ok '
(10.8) { aip g
\ﬁ = « A7
Pa,p g
where Kg is the geodesic curvature of rl . We also have a similar

pair of equations:

B *N
Pa,p” = Mg Ta ’
(10.9) { B *
Aa’ﬁn = Kg Py
where Kg* is the geodesic curvature of the congruence fz . We

wish to exhibit similar formulas for the conformal images of Fl and

r2 in V2 .

The conformal image of A 1is defined by
(10.10) A =e X ,

and the conformal image of p 1is given by

(10.11)

By a straightforward computation we see that the analogous formulas

to (10.8) are

> nBo_ T -
I\n;ﬁ'\ =n.e (kg + (v/p) ,
(10.12) { - A ~
P, ;”,\ = —/\”e (kg + n/p) ,
where g 1= nup" . Thus the geodesic curvature of rl is given by
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(10.13)

- 3
{ Py ',BP

(10.14) -

] -ad
Aa;Bp =e (kg +0

Hence we have that the geodesic curvature of rz is given by

a

where 9 =0 A
Equation (10.13) 1is the correction to equation (4) of

MARUSSI[1985] on page 150.

§11. CRITIQUE OF HOTINE’S ARGUMENT

In this section we critically examine Hotine’s argument for his
conjecture that was quoted in 47.

In the un-numbered equation immediately prior to his (7.6)
Hotine has an identity of the form

(11.1) a xtad) = gt
where the {xi} is a coordinate system on v3 (or E3) and gij
are the contravariant components of the metric tensor in this
coordinate system, However, (11.1) 1is not a general tensor
expression, but merely an algebraic identity that holds only at a

point. To see this observe that the left-hand side of (11.1) are
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scalars and the right-hand side are the components of a tensor. In

order to obtain the line element (7.7), Hotine has defined a

conformal map of Vy = Vg by

~

(11.2) N

_ 1.1 _ 1
= Al(x X )gij =g gij

However, the second equality in (11.2) holds only at a point and to
have a valid definition of a conformal map the conformal function
must be arbitrary. Hence (11.2) represents a non-trivial

specialization of the conformal function o in

(11.3) 94 = ezog

Furthermore, we have

(11.4) g7 ,=0,

where “," denotes covariant derivative with respect to the

-

Christoffel symbols of gij , and thus (11.4) shows that the gij

defined by (11.2) have the same Christoffel symbols as gij

The remainder of Hotine’'s argument is entirely based on such a
specialization of the conformal function. In the conformal geometry
discussed in Chapter 1I, o is always an arbitrary function. Any
specialization of it generally makes it constant or forces VN or

-

Yy to be flat. 1Indeed the only known N » 3 specialization of o

is the concircular mapping defined by

(11.5) ”i;j h "i"j = “glj ’
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but this is achieved only by the introduction of a new arbitrary
function ¢ .

Hotine may have been misled by two examples in McCONNELL[1931],
which is one of his major references. The first of these examples is

44, p. 197, which states:

1f we choose space coordinates to be orthogonal and such

that x3 = 0 1is the given surface and choose the u-curves on
the surface to be the intersections of the surface with the

x1 - and x2 - surfaces, then we have the following relations

for all points on the surface

. r _ Jdx r r,_9dx _ I
(1) Xl =3 = (51 ’ X2 == ("2
du du
.. ay _ af o3 33 _ 1
(i1) an[i guﬂ' 3 = 0; a g .9 =0, 933

{iii) § =1(0,0,— ).

The only thing explicit in McConnell’s statement is that the x’

are orthogonal curvilinear (not Cartesian) coordinates for E; . A

similar ambiguity occurs in EISENHART[1947), p. 159.
Presumably (i) is a formal specialization of

r
X

(11.6) = 6

c
<
X

which is a familiar result, e.g., EISENHART{1949], p. 2, that occurs

in the classical treatment of tensor transformation laws. However,
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(11.6) is wvalid only at a point -- a fact not stressed by
McCONNELL[1931] but which is always implicit in the tensor
transformation laws.

If we consider (i) as a system of differential equations we have

1 1

X =Uu + C

(11.7) x2 = u? ¢ 2
3 3
X = C

where cl , c2 , and c3 are constants. Thus if the differential

equations hold at all points of the surface, then the surface would
be flat. This is easy to see if one examines the Lamé equations in
Chapter III, %3 and the usual formula for Gaussian curvature when the
surface metric is orthogonal, viz.

1

1 1
K= - (( a Jiq + ( a )11
3 —~ “22117 1 —~ 1271

It can be arranged that (i) and hence (ii) and (iii) hold at a point

of the surface. Hence this example is incorrectly stated -- the

quoted results are valid only at a point, not on a surface.
McConnell’s second example is #1, page 188, which is similar to

equation (11.1) and states that

j }
(11.8) Ay = e
where 54’ are the contravariant components of the surface metric
and u’ are coordinates on the surface. The second example

essentially involves the first since by definition
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a 03
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Presumably McConnell’s second example was suggested by the -
discussion of BIANCHI[1910], pp. 67-69, which is correct. Since this ;&g)j
discussion is very instructive we will briefly outline it. Bianchi é é%

seeks to construct a non-singular change of variable B

~0
(11.10) N LRV ST ?ﬁ*

which reduces the first fundamental form d52 = aaBduadu’3 on a
ndv"dv’j having

surface V, , to 50

(11.11) a, = a22 Y 0. A

Then by (11.10), the correct statement of (11.8) is o N

(11.12) Al(v",v’*) -3

This follows by the definition of A1 (see Chapter II, §83) 'ﬁ”;‘a
A

0 ' o oA o oz -

a B Vo
¢ Oup Ou(7 afl 1}”

(11.13)
" du

which is the classical tensor transformation law. However, (11.13) .

holds not only at a point but in a coordinate chart of the point.

Writing § := v1 and n := v2 , (11.12) becomes

h)

5

XX
{ a_8

ﬁ{
h)
Ol

v

A" 7

Pd

- -12 =22
(11.14) Alf = all, Al(f,u) = a1 , Aln = a .

+

But since
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(11.15) (A,€)(8n) - Al(f,n)z - é - é

’

3(g,n) lz 0
T2
d(u”,u")

where a := launl , a = laaﬁl , it follows that

(11.16) 3y, = aAlf, a9 =~ aAl(f,n), a9 saAlvy .

Hence the condition, 512 =0, that the new coordinate lines

€ = constant, n = constant on V2 be orthogonal is that
(11.17) Al(fln) =0,

while 511 = 522 requires that
(11.18) Alf = Aln .

Explicitly expanding these expressions, and solving for the partial

derivatives Ny gives

ajf, -2y
T)1= ’
v a

(11.19) {
2961 ~21bs

n
2 va

The integrability conditions of these equations require that § be a

{real) solution of
(11.20) Azf =0 .

A similar procedure for the partial derivatives fu gives
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(11.21)
e - 1271 ° 222"
2 Va

So that n must be a (real) solution of

(11.22) Azn =0 .

The systems (11.19) and (11.21) are called Beltrami systems and they

are the Cauchy-Riemann equations on the curved surface vy .

Likewise (11.20) and (11.22) are Laplace's equations on V2 .

Thus the required reduction of aaﬂduadu[3 to
AN(E ) {d§2 + an} is equivalent to determining solutions of a pair
of Beltrami systems. This problem is now other than the construction
of an isothermal coordinate system on Vy and in effect explains
our comment on page 26 that any V2 is conformal to any other V2 .
There are an infinite number of systems of isothermal coordinates,
each system corresponding to an analytic function of the complex

variable u1 + iu2 . More precisely stated, if the coordinate lines

ul = constant, u2 = constant then all other isothermal systems are

given by the equations

Re{f(u1 + iuz)} = constant,
(11.23)
Irn{f(u1 + iu2)} = constant,
where f 1is an analytic function of ul + iu2 . Thus corresponding

to each isothermal system there is a conformal mapping

..........

L P AP AN NEAERE O R L S A et e e, .
" ‘ » LSS "i'.\ '. uh ‘-J.‘. \'-_' \'.‘\’-."\' " -ﬁ‘.-.' Lo g ‘.':._' N \-'\f_ L \{ ..JQ e e
v o . . , . st et 0. e

.
)
o

=
s
AN

N \-".\."". G
RN

A Ja N T
T TR )

»
L4

S
s

TS -‘:‘

'.J
8 4,
F AN

/s

S WY b
Yy 4

hY

"’

) >

S0 S, 225
« ‘s ’./
¥y

s ’

oS
»
Fy

'/.//'
v
F‘II

)

S

2 el
&l.l.l .
YN

ALY
e

b Z2n TR Sn 30 IR 3N
", .
&{%
L)

A

'féﬁ

L

Ny
-

oo
ks
‘.D
"

T e
‘l

.......



V2 - V2 2+

All of Bianchi’s work is two-dimensional; however, Hotine's

=E

argument requires a more complicated construction in three
dimensions, and his proof involves a serious omission. In effect he

snecializes the conformal function

(11.24)

to obtain the line element (7.3). This is employed to map the system
of surfaces ¢ = constant into a system of geodesic parallel
surfaces. Since the function ¢ 1is not truly arbitrary, it remains
to be shown that such a specialization is valid. In order to
complete Hotine's argument, it would be necessary to prove that his
specialization was admissible. 1In view of the previously indicated
error there seems little reason to attempt such a proof. Moreover,
it seems highly unlikely that such a proof could be done since the
requirement that o map a system of geodesically parallel surfaces
into a system of geodescially parallel surfaces forces o to reduce
to a constant, i.e., a homothety. Moreover, Bianchi's reduction of
a“ndd’de to isothermal form was possible only by the existence of
harmonic conjugate functions, and is a direct consequence of the
plentiful supply of analytic functions of a complex variable. In
Hotine’s case he requires a more complicated specialization of
gijdxidxj to the form (7.3). However, in three dimensions the
situation is significantly different. The three-dimensional analogue

of the Beltrami systems (see HEDRICK-INGOLD({1925}) does not reduce to

Cauchy~Riemann-like systems and the supply of analytic functions --
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hence conformal maps —— is quite limited. This, of course, was

h e

predicted by the Liouville Theorem in Chapter III, §3. For this

A YN

Y

reason it seems unlikely that Hotine's argument could be completed.
Finally we can also consider Hotine’s conjecture strictly from

the viewpoint of partial differential equations. let ¢ : vy - R be

a given function with non-vanishing gradient. From partial

differential equations we know that the system

v

Y

y)
{3
LY
P As

<

gljf.n.

i"5 Al(fm) =0

= ..l‘n
'-.-‘
{

x;
5

(11.25) {

¥

LS O

[

o
| Tt
.ﬁﬁ'.35‘01n-;

96,05 1= 4y (6.0) -

NS

} "

NN

has solutions n,( : V3 - R . If in addition we require that

AL
e

,“: LN AN
>

(11.26) gijgj =A,0n()=0,

e
LS
oy

A A A A A4

..
L J
5
X

that is, {£,y,() define a triply orthogonal system, then the system
of partial differential equations given by (11.25) and (11.26) is
over- determined and need not have a solution. Another equation on
€ 1is needed to ensure a solution and this new equation is precisely
the Cayley-Darboux equation of Chapter III. In fact, the

Cayley-Darboux equation 1is derived from a system of partial

differential equations analogous to (11.25) and (11.26).

It is now easy to see the connection between the generalized

-

Dupin theorem and the Cayley-Darboux equation. If we have a system

. .
)
[ T

of surfaces defined by ¢ = constant, then, it is always possible to

-

find another system orthogonal to it. However, the generalized Dupin

s

theorem states that the existence of a third system orthogonal to
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both of the others requires the original two systems to intersect in
lines of cuivature. Therefore, we may restate the Cayley-Darboux
theorem in the following manner.

If € : V3 - R defines a system of surfaces, then in order for
there to exist another system of surfaces orthogonal to that defined
by § and such that the two systems intersect in lines of curvature,
€ must satisfy the Cayley-Darboux equation.

In conclusion we have indicated three major reasons why Hotine’s
argument is seriously flawed:

(i) it involves a choice of coordinates, and simplification of

original metric which is valid only at a point;

(ii) it employs a specialization of the conformal mapping

function, but does not establish the admissibility of this

specialization;
{iii) it does not wverify that the geoidal surface given by
¢ = constant satisfies the Cayley-Darboux eguation.

Any one of these reasons would be non-trivial to rectify, and taken

together we feel they show that Hotine’s arqument is fatally flawed.
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Appendix - EXAMPLE OF THE CALCULATION OF CANONICAL CONGRUENCES

Let V3 =R = E3 and set

(A.1) f(xl,xz,x3) = (xl)2 + (x2)2 DN

"y %

[}
(4

2
2

*
»
-

s ,'.'l.'.‘

[
2

and for the purpose of convenience, rewrite (A.l) as f = xl2 + X

=

.« 4
’
b >
g

Then

A AU

N ¥

'I-{-,f
¢ 7L
AR Y,

\'{'

(A.2) vf = 2(x1,x2,0)

Y55 8%%

*
>
)

PN

hence the unit normal to the surfaces f = constant is

.
NN
2P

MCRTATRE S

o N
AL A

(A.3) €

—
q
rh

b UV

}"- '-.

&

LS

A

% 4 4
XN,
s

and (5.8) becomes
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Evaluation of this determinant yielrs
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1.-1/2

(A.6) = 0 or Ly =

Using the second equation of (5.7) the vector corresponding tu

wy o= 0 1is given by

(A.7) X aiJ oo
1]
T 2
A X A
1 2 - xlx2 0 1
A A = 0
2 2 2
- X%, X, 0
A3 \
0 0 0 3
and the vector corresponding to «, = % g172
i3] 1
(A.8) X .pp’ s ——=s
i3 2f1/2
ot
i T X 2 I
1 2 - X, X 0 1
1 ‘ 172 ; 1
372 | V2 2 b2 B V5!
2f - X Xy X1 0 2f
1’3 '
0 0 0 "3
If we make the change of variables
(A.9) Xy = costl Xy = sint Xy o= Xy
we obtain
(A.10) A=10,0,1),
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SUPPLEMENT (by J.D. ZUND)

81. Introduction

The work in Dr. Moore’s dissertation strongly suggests that Hotine's
conjecture is highly implausible. It shows that crucial steps in his
arquments are fatally flawed, but it does not prove that the conjecture is
false. Without using Hotine’s equations we cannot obtain his results, and we
were unable to derive his equations by other means. Our goal was then to find
a decisive part of his argument which was wrong. We succeeded in doing this
about a week after the dissertation was submitted to the examining committee
and the Graduate School of New Mexico State University. In this supplement I
will describe this conclusive error in more detail than was possible in our
joint paper "Hotine’'s Conjecture and Differential Geodesy,” which will be

published in Bulletin Geodesique.

As mentioned in our introduction to this research report, the major
oversight on Hotine's part was his failure to employ the formalism of Ricci
rotation coefficients. In Section %2 we will translate Hotine's Cayley-
Darboux equation into the language of rotation coefficients. 1In Section %3 it
will be shown that his Cayley-Darboux equation is not equivalent to the true
Cayley-Darboux equation and moreover neither of these equations is an
1dentity. Finally, 1in Section %4 we will discuss the physical ramifications
of this result and why MARUSSI [1985] (page 133) was correct in his 1967
statement that "there 1s no possibility of reducing the study of the earth's

potential field onto a triply-orthogonal system."

2. Hotine's Cayley-Darboux Equation
In this section we will reformuiat. i tine's Cayley-Darboux equation 1n

tne lanquage of rotation coofficient«. Before dming this, a few general

comments on notation are required. Fiist, cut papert "Hotine's Coniecture and
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Differential Geodesy" for Bulletin Geodesique was essentially written in

Hotine’s notation which differs slightly from that emploved in Dr. Moore's
dissertation. The main differences are that Hotine did not employ a comma to
denote covariant derivatives, and we indicate partial derivatives by a stroke
v Moreover, Hotine's conformal function m2 appears in the dissertation
as ez', and the triad [Aar} in our paper is denoted in the dissertation by

l]. Since this supplement is intended tc be read in conjunction with our

te,
paper, it will be written in Hotine’s notation. Additional differences in
notation will be noted where necessary.

Second, references to equations appearing in the dissertation will

include a page citation. References to our Bulletin Geodesique paper are to

equations appearing in its appendix and will include the prefix "A" in the
equation number. All numbered equations in this supplement will include the
prefix "S" in the equation number. Finally, references in the supplement will
always refer to those listed in the bibliography of the dissertation.

In HOTINE [1966b] (page 202), and in HOTINE [1969] (page 114), Hotine

announced two forms of the Cayley-Darboux equation: a s face equation

1 a f3o_ _
(8.1) (E)”n.\ =0 (o, =1, 2)
and a space equation
(S.2) Ly TS -0 (r, s =1, 2, 3)
nrs T e
In both these equations the vectors A”, ;/{ and Ar, “s respectively are

ptincipal directions. The factor n appears in the basic gradient equation:
(S.3) N =n"r '

and 1n this equation N is to be identified with the geopotential of the
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2

rotating Earth; each N-surface N(xl,x‘,xz) = constant is an equipotential
surface; and b is the unit normal to the N-surfaces. Hence physically n
corresponds to the magnitude of the gravitational acceleration, In the
dissertation, (S.3) is written with N, n, v replaced by ¢, ¢, Ei (see
(7.1) page 75).

Strictly speaking, Hotine's derivation of both (S.1) and (S.2) are rather
dubious. In HOTINE [1969] (pages 113-114) few details are given and we
suspect that the missing steps include use of equations which are valid only
at a point (see the dissertation pages 90-91). However, the real issue is not
how he derived these equations, but the fact that he regarded them —- in
particular (S.2) -~ as the genuine Cayley-Darboux equations.

In order to translate (S.2) into rotation coefficient language, we take

r

the unit vector vy to be the third vector of our triad [Aa }, with the unit

vectors Ar and y being the first two vectors of the triad. These
vectors, or equivalently the congruences rl and 12 having them as tangent

vectors, are assumed to be canonical with respect to . Hotine did not use
this terminology, but this important property is implicit in his construction.
This notion is fully discussed on pages 65-68 of the dissertation, The

‘Y and explicitly it 1s

resulting triad is denoted as {Aa )

We now proceed to translate (S.3) into rotation coefficients. First we

covariantly differentiate it to obtain

(S.4) N =np  + N ,
rs STt rs

and similarly

(5.5) N =nrnr_ +n
st rs St
But since Nr is a gradient, both these expressions are equal, viz
111
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Nrs = Nst! Using (S.4) and (S.5) we obtain

r s r s
N v =(nv_ +mn v =n
rs’ M ( s'r 'rs) ' /2!

N nrus = (no_ + np )“r“s = ny .
sr rs Sr 323

. . . . r r
since v is a unit vector, i.e., b= 1, we have vl = 0. Thus we

obtain

(5-6) n = M

/2 323

where n/2 = ngls and "/" 1is defined as in (A.2), or in the dissertation on

S s

and N urA

pages 54 and 58. Repeating the same procedure for NrsvrA sr

yields the corresponding equation

(S.7) n/l

= Mm

313

whe n = AT,
re 1 ns

It is convenient now to temporarily write ¥ = %, so (S.2) becomes

(S.8) v AT =0 .

To convert this into rotation coefficients, we compute the derivatives

and substitute them into (S.8). This gives the equation

rs r s
S.9 nn_ N\ - 2n_n A = .
( ) st M 2 rns 1] 0

On the other hand, by definition

- r S
n/l/2 = (nrA )g: ,
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However, we have

A

x

1,
%

s
P A
x

NS
3

g A S - r, ., ks
. gt T T2 132'

and since, by hypothesis ry is normal, 15, 321

= 7312 T 0 (see (5.11) page 69), this reduces to merely

<

2

20
&
LA

(see (5.2) page 66) and

= 3

Ay
L]
¢

canonical

o
LY

b

132

2
(MY
r A

S5 S\t\}\
A8

Ar :s =" lr
N g T 2t o
Thus, we obtain

r
n_A “S + 7
rs

N1~ 122%2 ¢ Pt

Lol RN NENE Y

. Ls _ _
(S.10) nrs)\ poo= n/l/2 1122“/2 . :-.. R

- Now using (S5.7) and differentiating, we see that

+ M

D2 = 313" 02 3132

hY
and by (S.6) this yields ;ﬁ

:\~

-

n(

s N = Mga3i3p3 + 7313,0)

Thus, combining these with (S.10) we have finally

)

n \L’JS = n(~y + N N
rst T ™MT3237313 T 3132 7 32371220 =

If this is substituted into (5.9) we obtain

2

L n"{ - 21 )y = 0

73237313 Y 73132 T 3237122 3237313

which simplifies to ..

0

(5.11) T313,2 T 73237313 T '323'122 T n
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and this is Hotine'’s Cayley-Darboux equation.

%3. The Cayley-Darboux Equation

We now establish that Hotine’s Cayley-Darboux equation is not eguivalent
to the true Cayley-Darboux equation, and that neither this equation, nor
{S.11), is an identity. This conclusively refutes the conjecture.

The first part is easy. In the case of a triply-orthogonal system of

surfaces, the respective surfaces pairwise interest in the normal canonical

’

L N i B
STt
” P

congruences Fl, rz, I as described in the triad scheme of 82. Thus, when

3

-

| ] = = 3 3 T . . - .: ¥ '
- Y312 = 7321 0 (the condition for the normal congruences ’1 and 12 to be i*ﬁt
N canonical with respect to [;), as shown in the dissertation on page 74, the 3:::4
y 23l
N Cayley-Darboux equation assumes the simple form "‘(1
RO
(S.12) 1123 = 0. LA

v b
a Al

It is now obvious that this does not have the same structure as Hotine's LSEEH
equation (S5.11). i:}gé
Hotine claimed that his equation was an identity by virtue of the Lame :zizii
e

equations (page 25) which express the flatness of Euclidean 3-space. In terms E&:}E

of rotation coefficients these are expressed by the six equations
(5.13) Rabcd =

3 .

ol vz

0,

Ri212 = Ri213 =

0,

Ri313 = Ri3z3 =

where
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Rabcd = 7abc/d - 7abd/c

(s.14)

+

E(ﬁfadwfbc - wfacvfbd)
£

* E’abf(’fcd = fde!

£

By an inspection of (S.14) it is clear that only one of the Lamé equations has
a form similar to (S.11). This is Ri3237 which by skew-symmetries is R31327

and
R3132 = 3132 ~ "3123

* E(’f321f13 - £337£12
£

DIVEPIRERToN
4
Expanding this expression using the normal and canonical condition

Y312 = Y321 < 0, we obtain

(51300 = 3135 = 73137323 ~ "3237122 7 "1237311 7 7322

where the underlined terms are precisely those appearing in (S.11). This
shows that Hotine'’s equation is merely a piece of o lame equation, and (S.11)

does not imply that 0 which is the true Cayley-Darboux equation.

7123 T

Moreover, (S.15) shows that need not be zero, hence the Cayley-Darboux

1123

equation is certainly not an identity!

%4. Physical Consequences

In %3 we showed that neither Hotine's Cayley-Darboux equation or the true
Cayley-Darboux equation is an identity, i.e., a consequence of the Lamr

equations for the flatness of E5. Thus, in order for E; to admit a triply-
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orthogonal system of coordinates the true Cayley-Darboux must be imposed as an

additional condition. This is presumably the reason for the cryptic comment
of Marussi quoted at the end of the introduction to this supplement.

The reasons for such a conclusion are now obvious, from the complicated
nature of the Cayley-Darboux equation (recall 46 of Chapter IV, pages 73-74).
One can argque both on mathematical and physical grounds, and in fact such
reasons are not truly independent.

Suppose one considers the simple case of the Earth rotating with a

uniform angular velocity « and having N as its geopotential function.

Then one has the Newtonian equation

~n

(5.16) AN = -2:°

(where A is the 3-dimensional Laplacian), and if the function N is to
define a N-surface of a triply-orthogonal system of surfaces, then it must

also satisfy the Cayley-Darboux equation
(5.17) RN =0 .

Equation (S.17) is a convenient way of writing the Cayley-Darboux equation (it
was not used in Chapter III, or ZUND/MOORE [1986), but it was introduced in

our Bulletin Géodésique paper). 1In effect, R might be called the Cayley-

Darboux operator which as we know is a complicated non-linear third order non-
linear partial differential operator. A tensor expression for (S.17) was

given in ZUND/MOORE [1986], i.e.,

NNN =0,

(5.18) bmq WNON

( )

‘ijk‘ﬂmn‘pquiP Nijps stNps

where ¢, is the Levi-Civita permutation tensor and the subscripts on the

ik
function N denote partial derivatives.
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Mathematically for a triply-orthcy s yetenm one is faced with solving
the combined system of equations (S5.16) and {(§.17). This system is rather
unspeakable, and there is no reason to suspect that these two eguations are
even consistent. Even worse are the technical questions of the existence and
uniqueness of such a combined lineat and non-linear set of equations.
Virtually nothing is known in this respect! From the underlying physical
situation, one would like to regard (5.16} as the basic equation for N with
($.17) being some kind of geometric constraint on the function N. However,
mathematically these roles might be interchanged! Zven if all these questions
are successfully resolved and (S.17) is regarded as a geometric constraint on
the problem, there 1is no gquarantee that it will not exclude all the
interesting solutions of (S.16). Thus, mathematically the combined system is
a horrendous problem.

Physically the situation is much simpler. It 1s clear that (5.16) is the
significant equation and that it is sufficient to determine the Newtonian
geopotential function N. The theory 1s complete and requires only one
equation, (S,16), and there is really no need for (S.17) in the physics of the
Earth’s gravity field. Barring an unlikely physical interpretation for (S.17)
-- which would make potential theory intc a non-linear theory (a non-Newtonian
theory) -- this equation is nonsense. Its only purpose is to produce a
triply-orthogonal system of surfaces and a ‘nice’ coordinate system. However,
1ts complicated nature -- both mathematically and physicaily -- since it could
exclude physically meaningful solutions of (S.16) -- suggests that such
coordinate systems need not exist. We nave no doubt that if Hotine had known
that the correct Cayley-Darboux was n-t an identity, he would have not
proposed  his  conjectute, Stated -sueonectly, (5.17) 1s not a physical
equation, and 1t does not fit o ante the Stpctare of Newtoman potential theory
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